Loading…

Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane

We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2024-12, Vol.136 (22)
Main Authors: Turley, W. D., La Lone, B. M., Mance, J. G., Staska, M. D., Stevens, G. D., Veeser, L. R., Aslam, T. D., Dattelbaum, D. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13
container_end_page
container_issue 22
container_start_page
container_title Journal of applied physics
container_volume 136
creator Turley, W. D.
La Lone, B. M.
Mance, J. G.
Staska, M. D.
Stevens, G. D.
Veeser, L. R.
Aslam, T. D.
Dattelbaum, D. M.
description We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density.
doi_str_mv 10.1063/5.0241114
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2480832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144176953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqUw8A8smEBK8TlOYo-oKg-pEgusWI5jNy6p3cbuwL8nbToz3en03etD6BbIDEiZPxUzQhkAsDM0AcJFVhUFOUcTQihkXFTiEl3FuCYEgOdigr4X1hqdcLBYYR26Tm2j8yu8UhHX-7ruDA4ep9bg2Ab9k6WQNSYFr5I71HvlozumzuPO7fauwd6lPmxMapU31-jCqi6am1Ocoq-Xxef8LVt-vL7Pn5eZhpLkWWEqWgsiGFUGcspVXXEQttE1cGuEKqll0JRaMUVYQagpa2FLoYky1jRDyxTdjXNDTE5G7ZLRrQ7eD79JyjjhOR2g-xHa9mG3NzHJddj3frhL5sAYVKUo8oF6GCndhxh7Y-W2dxvV_0og8uBYFvLkeGAfR_aw8ajkH_gPyLB7aQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144176953</pqid></control><display><type>article</type><title>Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Turley, W. D. ; La Lone, B. M. ; Mance, J. G. ; Staska, M. D. ; Stevens, G. D. ; Veeser, L. R. ; Aslam, T. D. ; Dattelbaum, D. M.</creator><creatorcontrib>Turley, W. D. ; La Lone, B. M. ; Mance, J. G. ; Staska, M. D. ; Stevens, G. D. ; Veeser, L. R. ; Aslam, T. D. ; Dattelbaum, D. M. ; Nevada National Security Sites/Mission Support and Test Services LLC, Las Vegas, NV (United States)</creatorcontrib><description>We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0241114</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>cameras ; Chemical reactions ; Detonation waves ; Explosive compacting ; Explosives ; Flat plates ; High speed cameras ; Hydrodynamics simulations ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Nitromethane ; Optical fibers ; optical spectroscopy ; Pressure dependence ; Shock wave propagation ; Shock waves ; Temperature dependence ; Temperature metrology ; Time measurement ; Velocimetry</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13</cites><orcidid>0000-0002-9412-5917 ; 0000-0001-7167-7885 ; 0000-0002-2759-8802 ; 0000-0001-9213-461X ; 0000-0002-9579-8996 ; 0000-0003-1721-3267 ; 0000-0002-4263-0401 ; 0000000294125917 ; 0000000171677885 ; 0000000317213267 ; 000000019213461X ; 0000000227598802 ; 0000000295798996 ; 0000000242630401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2480832$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turley, W. D.</creatorcontrib><creatorcontrib>La Lone, B. M.</creatorcontrib><creatorcontrib>Mance, J. G.</creatorcontrib><creatorcontrib>Staska, M. D.</creatorcontrib><creatorcontrib>Stevens, G. D.</creatorcontrib><creatorcontrib>Veeser, L. R.</creatorcontrib><creatorcontrib>Aslam, T. D.</creatorcontrib><creatorcontrib>Dattelbaum, D. M.</creatorcontrib><creatorcontrib>Nevada National Security Sites/Mission Support and Test Services LLC, Las Vegas, NV (United States)</creatorcontrib><title>Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane</title><title>Journal of applied physics</title><description>We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density.</description><subject>cameras</subject><subject>Chemical reactions</subject><subject>Detonation waves</subject><subject>Explosive compacting</subject><subject>Explosives</subject><subject>Flat plates</subject><subject>High speed cameras</subject><subject>Hydrodynamics simulations</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Nitromethane</subject><subject>Optical fibers</subject><subject>optical spectroscopy</subject><subject>Pressure dependence</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Temperature dependence</subject><subject>Temperature metrology</subject><subject>Time measurement</subject><subject>Velocimetry</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kDtPwzAQgC0EEqUw8A8smEBK8TlOYo-oKg-pEgusWI5jNy6p3cbuwL8nbToz3en03etD6BbIDEiZPxUzQhkAsDM0AcJFVhUFOUcTQihkXFTiEl3FuCYEgOdigr4X1hqdcLBYYR26Tm2j8yu8UhHX-7ruDA4ep9bg2Ab9k6WQNSYFr5I71HvlozumzuPO7fauwd6lPmxMapU31-jCqi6am1Ocoq-Xxef8LVt-vL7Pn5eZhpLkWWEqWgsiGFUGcspVXXEQttE1cGuEKqll0JRaMUVYQagpa2FLoYky1jRDyxTdjXNDTE5G7ZLRrQ7eD79JyjjhOR2g-xHa9mG3NzHJddj3frhL5sAYVKUo8oF6GCndhxh7Y-W2dxvV_0og8uBYFvLkeGAfR_aw8ajkH_gPyLB7aQ</recordid><startdate>20241214</startdate><enddate>20241214</enddate><creator>Turley, W. D.</creator><creator>La Lone, B. M.</creator><creator>Mance, J. G.</creator><creator>Staska, M. D.</creator><creator>Stevens, G. D.</creator><creator>Veeser, L. R.</creator><creator>Aslam, T. D.</creator><creator>Dattelbaum, D. M.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9412-5917</orcidid><orcidid>https://orcid.org/0000-0001-7167-7885</orcidid><orcidid>https://orcid.org/0000-0002-2759-8802</orcidid><orcidid>https://orcid.org/0000-0001-9213-461X</orcidid><orcidid>https://orcid.org/0000-0002-9579-8996</orcidid><orcidid>https://orcid.org/0000-0003-1721-3267</orcidid><orcidid>https://orcid.org/0000-0002-4263-0401</orcidid><orcidid>https://orcid.org/0000000294125917</orcidid><orcidid>https://orcid.org/0000000171677885</orcidid><orcidid>https://orcid.org/0000000317213267</orcidid><orcidid>https://orcid.org/000000019213461X</orcidid><orcidid>https://orcid.org/0000000227598802</orcidid><orcidid>https://orcid.org/0000000295798996</orcidid><orcidid>https://orcid.org/0000000242630401</orcidid></search><sort><creationdate>20241214</creationdate><title>Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane</title><author>Turley, W. D. ; La Lone, B. M. ; Mance, J. G. ; Staska, M. D. ; Stevens, G. D. ; Veeser, L. R. ; Aslam, T. D. ; Dattelbaum, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cameras</topic><topic>Chemical reactions</topic><topic>Detonation waves</topic><topic>Explosive compacting</topic><topic>Explosives</topic><topic>Flat plates</topic><topic>High speed cameras</topic><topic>Hydrodynamics simulations</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Nitromethane</topic><topic>Optical fibers</topic><topic>optical spectroscopy</topic><topic>Pressure dependence</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Temperature dependence</topic><topic>Temperature metrology</topic><topic>Time measurement</topic><topic>Velocimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turley, W. D.</creatorcontrib><creatorcontrib>La Lone, B. M.</creatorcontrib><creatorcontrib>Mance, J. G.</creatorcontrib><creatorcontrib>Staska, M. D.</creatorcontrib><creatorcontrib>Stevens, G. D.</creatorcontrib><creatorcontrib>Veeser, L. R.</creatorcontrib><creatorcontrib>Aslam, T. D.</creatorcontrib><creatorcontrib>Dattelbaum, D. M.</creatorcontrib><creatorcontrib>Nevada National Security Sites/Mission Support and Test Services LLC, Las Vegas, NV (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turley, W. D.</au><au>La Lone, B. M.</au><au>Mance, J. G.</au><au>Staska, M. D.</au><au>Stevens, G. D.</au><au>Veeser, L. R.</au><au>Aslam, T. D.</au><au>Dattelbaum, D. M.</au><aucorp>Nevada National Security Sites/Mission Support and Test Services LLC, Las Vegas, NV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-14</date><risdate>2024</risdate><volume>136</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0241114</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9412-5917</orcidid><orcidid>https://orcid.org/0000-0001-7167-7885</orcidid><orcidid>https://orcid.org/0000-0002-2759-8802</orcidid><orcidid>https://orcid.org/0000-0001-9213-461X</orcidid><orcidid>https://orcid.org/0000-0002-9579-8996</orcidid><orcidid>https://orcid.org/0000-0003-1721-3267</orcidid><orcidid>https://orcid.org/0000-0002-4263-0401</orcidid><orcidid>https://orcid.org/0000000294125917</orcidid><orcidid>https://orcid.org/0000000171677885</orcidid><orcidid>https://orcid.org/0000000317213267</orcidid><orcidid>https://orcid.org/000000019213461X</orcidid><orcidid>https://orcid.org/0000000227598802</orcidid><orcidid>https://orcid.org/0000000295798996</orcidid><orcidid>https://orcid.org/0000000242630401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-12, Vol.136 (22)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_2480832
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects cameras
Chemical reactions
Detonation waves
Explosive compacting
Explosives
Flat plates
High speed cameras
Hydrodynamics simulations
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Nitromethane
Optical fibers
optical spectroscopy
Pressure dependence
Shock wave propagation
Shock waves
Temperature dependence
Temperature metrology
Time measurement
Velocimetry
title Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20collapsing%20gas%20bubble%20on%20the%20shock-to-detonation%20transition%20in%20liquid%20nitromethane&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Turley,%20W.%20D.&rft.aucorp=Nevada%20National%20Security%20Sites/Mission%20Support%20and%20Test%20Services%20LLC,%20Las%20Vegas,%20NV%20(United%20States)&rft.date=2024-12-14&rft.volume=136&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0241114&rft_dat=%3Cproquest_osti_%3E3144176953%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144176953&rft_id=info:pmid/&rfr_iscdi=true