Loading…
Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane
We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble,...
Saved in:
Published in: | Journal of applied physics 2024-12, Vol.136 (22) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13 |
container_end_page | |
container_issue | 22 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 136 |
creator | Turley, W. D. La Lone, B. M. Mance, J. G. Staska, M. D. Stevens, G. D. Veeser, L. R. Aslam, T. D. Dattelbaum, D. M. |
description | We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density. |
doi_str_mv | 10.1063/5.0241114 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2480832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144176953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqUw8A8smEBK8TlOYo-oKg-pEgusWI5jNy6p3cbuwL8nbToz3en03etD6BbIDEiZPxUzQhkAsDM0AcJFVhUFOUcTQihkXFTiEl3FuCYEgOdigr4X1hqdcLBYYR26Tm2j8yu8UhHX-7ruDA4ep9bg2Ab9k6WQNSYFr5I71HvlozumzuPO7fauwd6lPmxMapU31-jCqi6am1Ocoq-Xxef8LVt-vL7Pn5eZhpLkWWEqWgsiGFUGcspVXXEQttE1cGuEKqll0JRaMUVYQagpa2FLoYky1jRDyxTdjXNDTE5G7ZLRrQ7eD79JyjjhOR2g-xHa9mG3NzHJddj3frhL5sAYVKUo8oF6GCndhxh7Y-W2dxvV_0og8uBYFvLkeGAfR_aw8ajkH_gPyLB7aQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144176953</pqid></control><display><type>article</type><title>Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Turley, W. D. ; La Lone, B. M. ; Mance, J. G. ; Staska, M. D. ; Stevens, G. D. ; Veeser, L. R. ; Aslam, T. D. ; Dattelbaum, D. M.</creator><creatorcontrib>Turley, W. D. ; La Lone, B. M. ; Mance, J. G. ; Staska, M. D. ; Stevens, G. D. ; Veeser, L. R. ; Aslam, T. D. ; Dattelbaum, D. M. ; Nevada National Security Sites/Mission Support and Test Services LLC, Las Vegas, NV (United States)</creatorcontrib><description>We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0241114</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>cameras ; Chemical reactions ; Detonation waves ; Explosive compacting ; Explosives ; Flat plates ; High speed cameras ; Hydrodynamics simulations ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Nitromethane ; Optical fibers ; optical spectroscopy ; Pressure dependence ; Shock wave propagation ; Shock waves ; Temperature dependence ; Temperature metrology ; Time measurement ; Velocimetry</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13</cites><orcidid>0000-0002-9412-5917 ; 0000-0001-7167-7885 ; 0000-0002-2759-8802 ; 0000-0001-9213-461X ; 0000-0002-9579-8996 ; 0000-0003-1721-3267 ; 0000-0002-4263-0401 ; 0000000294125917 ; 0000000171677885 ; 0000000317213267 ; 000000019213461X ; 0000000227598802 ; 0000000295798996 ; 0000000242630401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2480832$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turley, W. D.</creatorcontrib><creatorcontrib>La Lone, B. M.</creatorcontrib><creatorcontrib>Mance, J. G.</creatorcontrib><creatorcontrib>Staska, M. D.</creatorcontrib><creatorcontrib>Stevens, G. D.</creatorcontrib><creatorcontrib>Veeser, L. R.</creatorcontrib><creatorcontrib>Aslam, T. D.</creatorcontrib><creatorcontrib>Dattelbaum, D. M.</creatorcontrib><creatorcontrib>Nevada National Security Sites/Mission Support and Test Services LLC, Las Vegas, NV (United States)</creatorcontrib><title>Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane</title><title>Journal of applied physics</title><description>We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density.</description><subject>cameras</subject><subject>Chemical reactions</subject><subject>Detonation waves</subject><subject>Explosive compacting</subject><subject>Explosives</subject><subject>Flat plates</subject><subject>High speed cameras</subject><subject>Hydrodynamics simulations</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Nitromethane</subject><subject>Optical fibers</subject><subject>optical spectroscopy</subject><subject>Pressure dependence</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Temperature dependence</subject><subject>Temperature metrology</subject><subject>Time measurement</subject><subject>Velocimetry</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kDtPwzAQgC0EEqUw8A8smEBK8TlOYo-oKg-pEgusWI5jNy6p3cbuwL8nbToz3en03etD6BbIDEiZPxUzQhkAsDM0AcJFVhUFOUcTQihkXFTiEl3FuCYEgOdigr4X1hqdcLBYYR26Tm2j8yu8UhHX-7ruDA4ep9bg2Ab9k6WQNSYFr5I71HvlozumzuPO7fauwd6lPmxMapU31-jCqi6am1Ocoq-Xxef8LVt-vL7Pn5eZhpLkWWEqWgsiGFUGcspVXXEQttE1cGuEKqll0JRaMUVYQagpa2FLoYky1jRDyxTdjXNDTE5G7ZLRrQ7eD79JyjjhOR2g-xHa9mG3NzHJddj3frhL5sAYVKUo8oF6GCndhxh7Y-W2dxvV_0og8uBYFvLkeGAfR_aw8ajkH_gPyLB7aQ</recordid><startdate>20241214</startdate><enddate>20241214</enddate><creator>Turley, W. D.</creator><creator>La Lone, B. M.</creator><creator>Mance, J. G.</creator><creator>Staska, M. D.</creator><creator>Stevens, G. D.</creator><creator>Veeser, L. R.</creator><creator>Aslam, T. D.</creator><creator>Dattelbaum, D. M.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9412-5917</orcidid><orcidid>https://orcid.org/0000-0001-7167-7885</orcidid><orcidid>https://orcid.org/0000-0002-2759-8802</orcidid><orcidid>https://orcid.org/0000-0001-9213-461X</orcidid><orcidid>https://orcid.org/0000-0002-9579-8996</orcidid><orcidid>https://orcid.org/0000-0003-1721-3267</orcidid><orcidid>https://orcid.org/0000-0002-4263-0401</orcidid><orcidid>https://orcid.org/0000000294125917</orcidid><orcidid>https://orcid.org/0000000171677885</orcidid><orcidid>https://orcid.org/0000000317213267</orcidid><orcidid>https://orcid.org/000000019213461X</orcidid><orcidid>https://orcid.org/0000000227598802</orcidid><orcidid>https://orcid.org/0000000295798996</orcidid><orcidid>https://orcid.org/0000000242630401</orcidid></search><sort><creationdate>20241214</creationdate><title>Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane</title><author>Turley, W. D. ; La Lone, B. M. ; Mance, J. G. ; Staska, M. D. ; Stevens, G. D. ; Veeser, L. R. ; Aslam, T. D. ; Dattelbaum, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cameras</topic><topic>Chemical reactions</topic><topic>Detonation waves</topic><topic>Explosive compacting</topic><topic>Explosives</topic><topic>Flat plates</topic><topic>High speed cameras</topic><topic>Hydrodynamics simulations</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Nitromethane</topic><topic>Optical fibers</topic><topic>optical spectroscopy</topic><topic>Pressure dependence</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Temperature dependence</topic><topic>Temperature metrology</topic><topic>Time measurement</topic><topic>Velocimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turley, W. D.</creatorcontrib><creatorcontrib>La Lone, B. M.</creatorcontrib><creatorcontrib>Mance, J. G.</creatorcontrib><creatorcontrib>Staska, M. D.</creatorcontrib><creatorcontrib>Stevens, G. D.</creatorcontrib><creatorcontrib>Veeser, L. R.</creatorcontrib><creatorcontrib>Aslam, T. D.</creatorcontrib><creatorcontrib>Dattelbaum, D. M.</creatorcontrib><creatorcontrib>Nevada National Security Sites/Mission Support and Test Services LLC, Las Vegas, NV (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turley, W. D.</au><au>La Lone, B. M.</au><au>Mance, J. G.</au><au>Staska, M. D.</au><au>Stevens, G. D.</au><au>Veeser, L. R.</au><au>Aslam, T. D.</au><au>Dattelbaum, D. M.</au><aucorp>Nevada National Security Sites/Mission Support and Test Services LLC, Las Vegas, NV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-14</date><risdate>2024</risdate><volume>136</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We studied the shock-induced collapse of butane gas bubbles in the homogeneous explosive nitromethane (NM) to investigate the effects of hot spot formation on the detonation process. A butane bubble was injected into a sample of NM, and a shock wave from a flat plate impactor compressed the bubble, creating a localized hot spot. We measured shock and detonation wave speeds with optical velocimetry, and we used a high-speed camera to image the shock propagation and bubble collapse processes. A multiband optical fiber pyrometer measured the time-resolved thermal radiance, and we used the results and emissivity values extracted from spectral fits to estimate temperatures. We measured the characteristics of the shock-to-detonation transition in NM with and without a bubble. All experiments were performed at shock pressures near 8 GPa, where neat NM can detonate. A single bubble in this system was shown to sensitize NM, leading to a reduced run-to-detonation time. We used hydrodynamic modeling to predict shock wave propagation, the extent of chemical reaction, and subsequent temperature rise from the collapsing bubble. We used a temperature-dependent Arrhenius burn model for simulations, and it yielded much better results than reactive burn models that depend only on pressure and density.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0241114</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9412-5917</orcidid><orcidid>https://orcid.org/0000-0001-7167-7885</orcidid><orcidid>https://orcid.org/0000-0002-2759-8802</orcidid><orcidid>https://orcid.org/0000-0001-9213-461X</orcidid><orcidid>https://orcid.org/0000-0002-9579-8996</orcidid><orcidid>https://orcid.org/0000-0003-1721-3267</orcidid><orcidid>https://orcid.org/0000-0002-4263-0401</orcidid><orcidid>https://orcid.org/0000000294125917</orcidid><orcidid>https://orcid.org/0000000171677885</orcidid><orcidid>https://orcid.org/0000000317213267</orcidid><orcidid>https://orcid.org/000000019213461X</orcidid><orcidid>https://orcid.org/0000000227598802</orcidid><orcidid>https://orcid.org/0000000295798996</orcidid><orcidid>https://orcid.org/0000000242630401</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-12, Vol.136 (22) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_2480832 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | cameras Chemical reactions Detonation waves Explosive compacting Explosives Flat plates High speed cameras Hydrodynamics simulations INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Nitromethane Optical fibers optical spectroscopy Pressure dependence Shock wave propagation Shock waves Temperature dependence Temperature metrology Time measurement Velocimetry |
title | Effect of a collapsing gas bubble on the shock-to-detonation transition in liquid nitromethane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20collapsing%20gas%20bubble%20on%20the%20shock-to-detonation%20transition%20in%20liquid%20nitromethane&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Turley,%20W.%20D.&rft.aucorp=Nevada%20National%20Security%20Sites/Mission%20Support%20and%20Test%20Services%20LLC,%20Las%20Vegas,%20NV%20(United%20States)&rft.date=2024-12-14&rft.volume=136&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0241114&rft_dat=%3Cproquest_osti_%3E3144176953%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1603-5e72b90942ae1328ab7819fdcb18fe9a62f41d6ca4a04502e6b9f69c0aefede13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144176953&rft_id=info:pmid/&rfr_iscdi=true |