Loading…
Kinetics of Pyrolysis and Thermal Evolution of Negev Desert Lithologies
The Negev desert in Israel is home to large quantities of organic-rich, shallow marine sedimentary lithologies that could potentially accommodate the disposal of spent nuclear fuel. Previous thermal analyses of Negev carbonates have focused on industrially relevant considerations such as natural gas...
Saved in:
Published in: | ACS earth and space chemistry 2025-01, Vol.9 (1), p.76-91 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Negev desert in Israel is home to large quantities of organic-rich, shallow marine sedimentary lithologies that could potentially accommodate the disposal of spent nuclear fuel. Previous thermal analyses of Negev carbonates have focused on industrially relevant considerations such as natural gas and oil extraction or pyrolysis for recovering hydrocarbon fuels. This study addresses thermal evolution of the Negev organic-rich carbonate, siliceous, and phosphorite rocks and associated chemical, mineralogical, and microstructural changes that may occur under prolonged thermal loading in the vicinity of spent nuclear fuel disposal systems. Our employed methods include high-temperature X-ray diffraction, high-temperature infrared spectroscopy, and thermal analysis integrating thermogravimetry, differential scanning calorimetry, and mass spectrometry. Further, we apply iterative iso-conversional model-free methods to derive kinetic parameters for thermal decomposition of the Negev organic-rich carbonate rocks from 200 to 550 °C. Our results have provided mechanistic insights into the thermal evolution encompassing water desorption, decomposition of organic matter, and decarbonation of carbonate phases. |
---|---|
ISSN: | 2472-3452 2472-3452 |
DOI: | 10.1021/acsearthspacechem.4c00218 |