Loading…

Incorporation of cytochrome oxidase into cardiolipin bilayers and induction of nonlamellar phases

Cytochrome oxidase from beef heart has been lipid-substituted with beef heart cardiolipin. The lipid phase behavior and protein aggregation state of the reconstituted complexes have been studied with 31P NMR, freeze-fracture electron microscopy, and saturation-transfer ESR of the spin-labeled protei...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1990-05, Vol.29 (21), p.5127-5132
Main Authors: Powell, Gary L, Knowles, Peter F, Marsh, Derek
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cytochrome oxidase from beef heart has been lipid-substituted with beef heart cardiolipin. The lipid phase behavior and protein aggregation state of the reconstituted complexes have been studied with 31P NMR, freeze-fracture electron microscopy, and saturation-transfer ESR of the spin-labeled protein. In the absence of salt, the lipid has a lamellar arrangement, and the protein is integrated and uniformly distributed in the membrane vesicles and undergoes rapid rotational diffusion. The presence of the protein stabilizes the cardiolipin lamellar phase against salt-induced transitions to the inverted hexagonal phase. The threshold salt concentration becomes higher and the extent of conversion becomes lower with decreasing lipid:protein ratio. In high salt, lamellar-phase lipid with integrated protein coexists with hexagonal-phase lipid free of protein, and the rotational diffusion of the protein is drastically reduced as a result of the high packing density.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00473a018