Loading…

Vortices in high-temperature superconductors

The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j]...

Full description

Saved in:
Bibliographic Details
Published in:Reviews of modern physics 1994-10, Vol.66 (4), p.1125-1388
Main Authors: Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I., Vinokur, V. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.
ISSN:0034-6861
1539-0756
DOI:10.1103/RevModPhys.66.1125