Loading…
The Structure of the KinA-Sda Complex Suggests an Allosteric Mechanism of Histidine Kinase Inhibition
The Bacillus subtilis histidine kinase KinA controls activation of the transcription factor governing sporulation, Spo0A. The decision to sporulate involves KinA phosphorylating itself on a conserved histidine residue, after which the phosphate moiety is relayed via two other proteins to Spo0A. The...
Saved in:
Published in: | Journal of molecular biology 2007-04, Vol.368 (2), p.407-420 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The
Bacillus subtilis histidine kinase KinA controls activation of the transcription factor governing sporulation, Spo0A. The decision to sporulate involves KinA phosphorylating itself on a conserved histidine residue, after which the phosphate moiety is relayed
via two other proteins to Spo0A. The DNA-damage checkpoint inhibitor Sda halts this pathway by binding KinA and blocking the autokinase reaction. We have performed small-angle X-ray scattering and neutron contrast variation studies on the complex formed by KinA and Sda. The data show that two Sda molecules bind to the base of the DHp dimerization domain of the KinA dimer. In this position Sda does not appear to be able to sterically block the catalytic domain from accessing its target histidine, as previously proposed, but rather may effect an allosteric mode of inhibition involving transmission of the inhibitory signal
via the four-helix bundle that forms the DHp domain. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2007.01.064 |