Loading…

Structural and Kinetic Studies of Induced Fit in Xylulose Kinase from Escherichia coli

The primary metabolic route for d-xylose, the second most abundant sugar in nature, is via the pentose phosphate pathway after a two-step or three-step conversion to xylulose-5-phosphate. Xylulose kinase (XK; EC 2.7.1.17) phosphorylates d-xylulose, the last step in this conversion. The apo and d-xyl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2007-01, Vol.365 (3), p.783-798
Main Authors: Di Luccio, Eric, Petschacher, Barbara, Voegtli, Jennifer, Chou, Hui-Ting, Stahlberg, Henning, Nidetzky, Bernd, Wilson, David K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The primary metabolic route for d-xylose, the second most abundant sugar in nature, is via the pentose phosphate pathway after a two-step or three-step conversion to xylulose-5-phosphate. Xylulose kinase (XK; EC 2.7.1.17) phosphorylates d-xylulose, the last step in this conversion. The apo and d-xylulose-bound crystal structures of Escherichia coli XK have been determined and show a dimer composed of two domains separated by an open cleft. XK dimerization was observed directly by a cryo-EM reconstruction at 36 Å resolution. Kinetic studies reveal that XK has a weak substrate-independent MgATP-hydrolyzing activity, and phosphorylates several sugars and polyols with low catalytic efficiency. Binding of pentulose and MgATP to form the reactive ternary complex is strongly synergistic. Although the steady-state kinetic mechanism of XK is formally random, a path is preferred in which d-xylulose binds before MgATP. Modelling of MgATP binding to XK and the accompanying conformational change suggests that sugar binding is accompanied by a dramatic hinge-bending movement that enhances interactions with MgATP, explaining the observed synergism. A catalytic mechanism is proposed and supported by relevant site-directed mutants.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2006.10.068