Loading…

Cytokine receptor profile of arthroplasty macrophages, foreign body giant cells and mature osteoclasts

In the arthroplasty pseudomembrane surrounding a loose prosthesis there is a marked macrophage and foreign body giant cell (FBGC) response to implant-derived wear particles. These cells contribute to the osteolysis of loosening by releasing cytokines and growth factors which influence the formation...

Full description

Saved in:
Bibliographic Details
Published in:Acta orthopaedica 1999, Vol.70 (5), p.452-458
Main Authors: Neale, Susan D, Athanasou, Nicholas A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the arthroplasty pseudomembrane surrounding a loose prosthesis there is a marked macrophage and foreign body giant cell (FBGC) response to implant-derived wear particles. These cells contribute to the osteolysis of loosening by releasing cytokines and growth factors which influence the formation and activity of osteoclasts. Using a panel of monoclonal antibodies directed against known cytokine/growth factor receptors, we have determined by immunohis-tochemistry whether arthroplasty macrophages, FB-GCs and osteoclasts express receptors for cytokines and growth factors that are known to modulate osteolysis. All these cell types reacted with antibodies directed against the following cytokine/growth factor receptors: gp130, IL-1R type 1, IL-2R, IL-4R, IL-6R, TNFR, M-CSFR, GM-CSFR and SCFR but not with antibodies directed against IL-3R and IL-8R. Arthroplasty macrophages, FBGCs and osteoclasts thus show a similar pattern of cytokine/growth factor receptor expression. This reflects the fact that arthroplasty macrophages are capable of osteoclast differentiation and that these cell types form part of the mononuclear phagocyte system. As regards the osteolysis of aseptic loosening, it also indicates that these cells are targets for numerous cytokines and growth factors which influence osteoclast formation and bone resorption.
ISSN:1745-3674
0001-6470
1745-3682
DOI:10.3109/17453679909000980