Loading…

Evaluation of surface-potential-based bulk-charge compact MOS transistor model

The existing surface-potential-based compact metal-oxide-semiconductor transistor models are based on the 1978 Brews delta-function charge-sheet approximation, which was derived empirically from the 1966 Pao-Sah drift-diffusion double integral formula. This paper provides a device physics-based deri...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2005-08, Vol.52 (8), p.1787-1794
Main Authors: Jie, B.B., Chih-Tang Sah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The existing surface-potential-based compact metal-oxide-semiconductor transistor models are based on the 1978 Brews delta-function charge-sheet approximation, which was derived empirically from the 1966 Pao-Sah drift-diffusion double integral formula. This paper provides a device physics-based derivation of a surface-potential-based compact model by analytical approximation of the double and single bulk-charge integrals of the four one-dimensional components of the six-component 1996 Sah two-dimensional formula. In this compact model development, the mobile carrier-space-charge-limited parabolic-drift and linear-diffusion current components are analytically represented by the surface potential without approximation, while the immobile-impurity bulk-space-charge-limited double-integral drift-current and single-integral diffusion-current components are evaluated analytically using three possible surface-potential compact model approximations. This paper calculates the accuracy of these approximate analytical bulk-charge-limited drift and diffusion current components in both the inversion and subthreshold ranges and discusses factors that affect the accuracy in the subthreshold range and near flatband.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2005.851833