Loading…

Minimax-optimal classification with dyadic decision trees

Decision trees are among the most popular types of classifiers, with interpretability and ease of implementation being among their chief attributes. Despite the widespread use of decision trees, theoretical analysis of their performance has only begun to emerge in recent years. In this paper, it is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2006-04, Vol.52 (4), p.1335-1353
Main Authors: Scott, C., Nowak, R.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decision trees are among the most popular types of classifiers, with interpretability and ease of implementation being among their chief attributes. Despite the widespread use of decision trees, theoretical analysis of their performance has only begun to emerge in recent years. In this paper, it is shown that a new family of decision trees, dyadic decision trees (DDTs), attain nearly optimal (in a minimax sense) rates of convergence for a broad range of classification problems. Furthermore, DDTs are surprisingly adaptive in three important respects: they automatically 1) adapt to favorable conditions near the Bayes decision boundary; 2) focus on data distributed on lower dimensional manifolds; and 3) reject irrelevant features. DDTs are constructed by penalized empirical risk minimization using a new data-dependent penalty and may be computed exactly with computational complexity that is nearly linear in the training sample size. DDTs comprise the first classifiers known to achieve nearly optimal rates for the diverse class of distributions studied here while also being practical and implementable. This is also the first study (of which we are aware) to consider rates for adaptation to intrinsic data dimension and relevant features.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.871056