Loading…

Study of in-vessel nonaxisymmetric ELM suppression coil concepts for ITER

Large Type-I edge-localized mode (ELM) heat pulses may limit the life of divertor targets in a burning plasma. Recent experiments show that pitch-resonant nonaxisymmetric magnetic perturbations of the plasma edge of 0.0005 or less of the main magnetic field offer a useful solution, but there is litt...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion 2008-02, Vol.48 (2), p.024004
Main Authors: Schaffer, M.J, Menard, J.E, Aldan, M.P, Bialek, J.M, Evans, T.E, Moyer, R.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large Type-I edge-localized mode (ELM) heat pulses may limit the life of divertor targets in a burning plasma. Recent experiments show that pitch-resonant nonaxisymmetric magnetic perturbations of the plasma edge of 0.0005 or less of the main magnetic field offer a useful solution, but there is little room in the presently designed ITER for even small perturbation coils. We present proposed coil requirements for ITER ELM suppression, derived primarily from DIII-D ELM suppression experiments. We show by calculated examples that large arrays of coils (e.g. four toroidal rows of nine coils each) on the outboard wall near the plasma (at the radius of the blanket-vacuum vessel interface R ∼ 8 m) can meet the known requirements, expressed in terms of the toroidal helical Fourier harmonic spectrum, for both low- and high- q ITER plasmas, when coil currents are distributed to concentrate the magnetic perturbation into a single dominant Fourier spectral peak. Fields from arrays of less than four rows of nine coils (a) penetrate relatively more strongly into the core plasma, and (b) generate more and larger nonresonant spectral peaks. Both features are expected to brake desirable plasma rotation. We found that the Moiré effect from approximating sinusoidal perturbations by a limited discrete coil set can be used to control nonfundamental harmonics in large arrays. We show that a judicious choice of current distribution among the coils ameliorates effects of an 80° toroidal gap where no coils are allowed in the ITER midplane.
ISSN:0029-5515
1741-4326
DOI:10.1088/0029-5515/48/2/024004