Loading…
The Q -Norm Complexity Measure and the Minimum Gradient Method: A Novel Approach to the Machine Learning Structural Risk Minimization Problem
This paper presents a novel approach for dealing with the structural risk minimization (SRM) applied to a general setting of the machine learning problem. The formulation is based on the fundamental concept that supervised learning is a bi-objective optimization problem in which two conflicting obje...
Saved in:
Published in: | IEEE transactions on neural networks 2008-08, Vol.19 (8), p.1415-1430 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel approach for dealing with the structural risk minimization (SRM) applied to a general setting of the machine learning problem. The formulation is based on the fundamental concept that supervised learning is a bi-objective optimization problem in which two conflicting objectives should be minimized. The objectives are related to the empirical training error and the machine complexity. In this paper, one general Q-norm method to compute the machine complexity is presented, and, as a particular practical case, the minimum gradient method (MGM) is derived relying on the definition of the fat-shattering dimension. A practical mechanism for parallel layer perceptron (PLP) network training, involving only quasi-convex functions, is generated using the aforementioned definitions. Experimental results on 15 different benchmarks are presented, which show the potential of the proposed ideas. |
---|---|
ISSN: | 1045-9227 1941-0093 |
DOI: | 10.1109/TNN.2008.2000442 |