Loading…

Maximal n-Orthogonal Modules for Selfinjective Algebras

Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2008-09, Vol.136 (9), p.3069-3078
Main Authors: Erdmann, Karin, Holm, Thorsten
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-08-09297-6