Loading…
Maximal n-Orthogonal Modules for Selfinjective Algebras
Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.
Saved in:
Published in: | Proceedings of the American Mathematical Society 2008-09, Vol.136 (9), p.3069-3078 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-08-09297-6 |