Loading…
Mixed Quantum-Classical Methods for Molecular Simulations of Biochemical Reactions With Microwave Fields: The Case Study of Myoglobin
Contradictory data in the huge literature on microwaves bio-effects may result from a poor understanding of the mechanisms of interaction between microwaves and biological systems. Molecular simulations of biochemical processes seem to be a promising tool to comprehend microwave induced bio-effects....
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2008-11, Vol.56 (11), p.2511-2519 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Contradictory data in the huge literature on microwaves bio-effects may result from a poor understanding of the mechanisms of interaction between microwaves and biological systems. Molecular simulations of biochemical processes seem to be a promising tool to comprehend microwave induced bio-effects. Molecular simulations of classical and quantum events involved in relevant biochemical processes enable to follow the dynamic evolution of a biochemical reaction in the presence of microwave fields. In this paper, the action of a microwave signal (1 GHz) on the covalent binding process of a ligand (carbon monoxide) to a protein (myoglobin) has been studied. Our results indicate that microwave fields, with intensities much below the atomic/molecular electric interactions, cannot affect such biochemical process. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2008.2005890 |