Loading…
An asymptotic mean value characterization for p-harmonic functions
We characterize p-harmonic functions in terms of an asymptotic mean value property. A p-harmonic function u is a viscosity solution to \Delta _p u = \mbox {div} ( |\nabla u|^{p-2} \nabla u)=0 with 1< p \leq \infty in a domain \Omega if and only if the expansion u(x) = \frac {\alpha }{2} \left { \...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2010-03, Vol.138 (3), p.881-889 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We characterize p-harmonic functions in terms of an asymptotic mean value property. A p-harmonic function u is a viscosity solution to \Delta _p u = \mbox {div} ( |\nabla u|^{p-2} \nabla u)=0 with 1< p \leq \infty in a domain \Omega if and only if the expansion u(x) = \frac {\alpha }{2} \left { \max _{\overline {B_\varepsilon (x)}} u + \min _{\overline {B_\varepsilon (x)}} u \right } + \frac {\beta }{|B_\varepsilon (x)|} \int _{B_\varepsilon (x)} u d y + o (\varepsilon ^2) holds as \varepsilon \to 0 for x\in \Omega in a weak sense, which we call the viscosity sense. Here the coefficients \alpha , \beta are determined by \alpha + \beta =1 and \alpha /\beta = (p-2)/(N+2). |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-09-10183-1 |