Loading…

Geometric Analysis of the Formation Problem for Autonomous Robots

In the formation control problem for autonomous robots, a distributed control law steers the robots to the desired target formation. A local stability result of the target formation can be derived by methods of linearization and center manifold theory or via a Lyapunov-based approach. Besides the ta...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2010-10, Vol.55 (10), p.2379-2384
Main Authors: Dörfler, Florian, Francis, Bruce
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the formation control problem for autonomous robots, a distributed control law steers the robots to the desired target formation. A local stability result of the target formation can be derived by methods of linearization and center manifold theory or via a Lyapunov-based approach. Besides the target formation, the closed-loop dynamics of the robots feature various other undesired invariant sets such as nonrigid formations. This note addresses a global stability analysis of the closed-loop formation control dynamics. We pursue a differential geometric approach and derive purely algebraic conditions for local stability of invariant embedded submanifolds. These theoretical results are then applied to the well-known example of a cyclic triangular formation and result in instability of all invariant sets other than the target formation.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2053735