Loading…
Geometric Analysis of the Formation Problem for Autonomous Robots
In the formation control problem for autonomous robots, a distributed control law steers the robots to the desired target formation. A local stability result of the target formation can be derived by methods of linearization and center manifold theory or via a Lyapunov-based approach. Besides the ta...
Saved in:
Published in: | IEEE transactions on automatic control 2010-10, Vol.55 (10), p.2379-2384 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the formation control problem for autonomous robots, a distributed control law steers the robots to the desired target formation. A local stability result of the target formation can be derived by methods of linearization and center manifold theory or via a Lyapunov-based approach. Besides the target formation, the closed-loop dynamics of the robots feature various other undesired invariant sets such as nonrigid formations. This note addresses a global stability analysis of the closed-loop formation control dynamics. We pursue a differential geometric approach and derive purely algebraic conditions for local stability of invariant embedded submanifolds. These theoretical results are then applied to the well-known example of a cyclic triangular formation and result in instability of all invariant sets other than the target formation. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2010.2053735 |