Loading…

DEM generation and error analysis using the first Chinese airborne dual-antenna interferometric SAR data

Terrain survey with traditional photogrammetry is often difficult in western China, such as Qingzang tableland at an average height of 5000 m above sea level and the southwest China area with cloudy weather. To resolve western terrain mapping, the first Chinese single-pass airborne Interferometric S...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing 2011-01, Vol.32 (23), p.8485-8504
Main Authors: Sun, Zhongchang, Guo, Huadong, Li, Xinwu, Yue, Xijuan, Huang, Qingni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terrain survey with traditional photogrammetry is often difficult in western China, such as Qingzang tableland at an average height of 5000 m above sea level and the southwest China area with cloudy weather. To resolve western terrain mapping, the first Chinese single-pass airborne Interferometric Synthetic Aperture Radar (InSAR) system was successfully developed by the Institute of Electronics, Chinese Academy of Sciences (IECAS) in 2004. The main objective of this article is to examine and evaluate the performance of the airborne SAR system through interferometric processing and error analysis. First, the article describes how high-precision digital elevation models (DEMs) are derived from the airborne dual-antenna (single-pass) InSAR data. In order to improve the precision, the antenna eccentricity correction and parameter calibration with the least square method (LSM) are proposed. Based on the airborne dual-antenna InSAR bore-sight model, this article summarizes the primary factors that influence the accuracy of DEMs in data processing, and analyses the errors induced by these factors. Then, the global positioning system (GPS)/inertial measurement unit (IMU) data, acquired and stored by the position and orientation system (POS), is used for analysing the quantitative relationships among the platform height, baseline length, baseline angle, look angle and DEM error. The experimental data used are airborne dual-antenna X-band InSAR data, and the measured ground control points (GCPs) are used to validate the accuracy of the DEM. The evaluation results in terms of the standard deviation (SD) and the average mean error (AME) are derived by comparing the reconstructed InSAR DEM with the reference GCPs. The AMEs of the X-direction, the Y-direction and the height are up to 2.078, 9.149 and 1.763 m, respectively. The SDs of the X-direction, the Y-direction and the height are up to ±1.379, ±0.764 and ±1.086 m, respectively. These results agree with the previously calculated quantitative errors. The error value of the Y-direction seems too large, a possible result of system errors. In general, the airborne dual-antenna InSAR system initially meets the requirements of 1:50 000 terrain mapping in western China.
ISSN:1366-5901
0143-1161
1366-5901
DOI:10.1080/01431161.2010.542197