Loading…
Quadratic nonlinear Klein-Gordon equation in one dimension
We study the initial value problem for the quadratic nonlinear Klein-Gordon equation v tt + v − v xx = λv 2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v 0(x), v t (0, x) = v 1(x), x ∈ R, where v 0 and v 1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah [“Normal for...
Saved in:
Published in: | Journal of mathematical physics 2012-10, Vol.53 (10) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the initial value problem for the quadratic nonlinear Klein-Gordon equation v
tt
+ v − v
xx
= λv
2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v
0(x), v
t
(0, x) = v
1(x), x ∈ R, where v
0 and v
1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah [“Normal forms and quadratic nonlinear Klein-Gordon equations,” Commun. Pure Appl. Math. 38, 685–696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort [“Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1,” Ann. Sci. Ec. Normale Super. 34(4), 1–61 (2001)]. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4759156 |