Loading…
Quadratic nonlinear Klein-Gordon equation in one dimension
We study the initial value problem for the quadratic nonlinear Klein-Gordon equation v tt + v − v xx = λv 2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v 0(x), v t (0, x) = v 1(x), x ∈ R, where v 0 and v 1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah [“Normal for...
Saved in:
Published in: | Journal of mathematical physics 2012-10, Vol.53 (10) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-264649ec914f960b4f3a2e723d45a8c098e5199a5fbff080241175bf9c2484e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-264649ec914f960b4f3a2e723d45a8c098e5199a5fbff080241175bf9c2484e43 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 53 |
creator | Hayashi, Nakao Naumkin, Pavel I. |
description | We study the initial value problem for the quadratic nonlinear Klein-Gordon equation v
tt
+ v − v
xx
= λv
2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v
0(x), v
t
(0, x) = v
1(x), x ∈ R, where v
0 and v
1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah [“Normal forms and quadratic nonlinear Klein-Gordon equations,” Commun. Pure Appl. Math. 38, 685–696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort [“Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1,” Ann. Sci. Ec. Normale Super. 34(4), 1–61 (2001)]. |
doi_str_mv | 10.1063/1.4759156 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_26615698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323212302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-264649ec914f960b4f3a2e723d45a8c098e5199a5fbff080241175bf9c2484e43</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pwX_Qi6BCZ740TRNvMnSKAxH0HLI0gUiXbEkr-O8X3ZgHwVNCvicvHy9C54AngFl1AxPa1AJqdoBGgLkoG1bzQzTCmJCSUM6P0UlKHxgDcEpH6PZ1UG1UvdOFD75z3qhYPHfG-XIWYht8YdZDHueL80Xwpmjd0viUH07RkVVdMme7c4zeH-7fpo_l_GX2NL2bl5oS3peEUUaF0QKoFQwvqK0UMQ2pWlorrrHgpgYhVG0X1mKOCQVo6oUVOq9LDa3G6HKbu4phPZjUy6VL2nSd8iYMSUJFKgKkwiTTqy3VMaQUjZWr6JYqfknA8rsfCXLXT7YXu1iVtOpsVF67tP9AGMtK8Oyuty5p1_80sTefIf4GylVr_8N_N9gAojV_AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323212302</pqid></control><display><type>article</type><title>Quadratic nonlinear Klein-Gordon equation in one dimension</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Hayashi, Nakao ; Naumkin, Pavel I.</creator><creatorcontrib>Hayashi, Nakao ; Naumkin, Pavel I.</creatorcontrib><description>We study the initial value problem for the quadratic nonlinear Klein-Gordon equation v
tt
+ v − v
xx
= λv
2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v
0(x), v
t
(0, x) = v
1(x), x ∈ R, where v
0 and v
1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah [“Normal forms and quadratic nonlinear Klein-Gordon equations,” Commun. Pure Appl. Math. 38, 685–696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort [“Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1,” Ann. Sci. Ec. Normale Super. 34(4), 1–61 (2001)].</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4759156</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Asymptotic properties ; Exact sciences and technology ; Initial conditions ; Initial value problems ; Klein-Gordon equation ; Mathematical analysis ; Mathematical methods in physics ; Mathematics ; Nonlinearity ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2012-10, Vol.53 (10)</ispartof><rights>American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-264649ec914f960b4f3a2e723d45a8c098e5199a5fbff080241175bf9c2484e43</citedby><cites>FETCH-LOGICAL-c428t-264649ec914f960b4f3a2e723d45a8c098e5199a5fbff080241175bf9c2484e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4759156$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26615698$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayashi, Nakao</creatorcontrib><creatorcontrib>Naumkin, Pavel I.</creatorcontrib><title>Quadratic nonlinear Klein-Gordon equation in one dimension</title><title>Journal of mathematical physics</title><description>We study the initial value problem for the quadratic nonlinear Klein-Gordon equation v
tt
+ v − v
xx
= λv
2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v
0(x), v
t
(0, x) = v
1(x), x ∈ R, where v
0 and v
1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah [“Normal forms and quadratic nonlinear Klein-Gordon equations,” Commun. Pure Appl. Math. 38, 685–696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort [“Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1,” Ann. Sci. Ec. Normale Super. 34(4), 1–61 (2001)].</description><subject>Asymptotic properties</subject><subject>Exact sciences and technology</subject><subject>Initial conditions</subject><subject>Initial value problems</subject><subject>Klein-Gordon equation</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYBuAgCs7pwX_Qi6BCZ740TRNvMnSKAxH0HLI0gUiXbEkr-O8X3ZgHwVNCvicvHy9C54AngFl1AxPa1AJqdoBGgLkoG1bzQzTCmJCSUM6P0UlKHxgDcEpH6PZ1UG1UvdOFD75z3qhYPHfG-XIWYht8YdZDHueL80Xwpmjd0viUH07RkVVdMme7c4zeH-7fpo_l_GX2NL2bl5oS3peEUUaF0QKoFQwvqK0UMQ2pWlorrrHgpgYhVG0X1mKOCQVo6oUVOq9LDa3G6HKbu4phPZjUy6VL2nSd8iYMSUJFKgKkwiTTqy3VMaQUjZWr6JYqfknA8rsfCXLXT7YXu1iVtOpsVF67tP9AGMtK8Oyuty5p1_80sTefIf4GylVr_8N_N9gAojV_AA</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Hayashi, Nakao</creator><creator>Naumkin, Pavel I.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121001</creationdate><title>Quadratic nonlinear Klein-Gordon equation in one dimension</title><author>Hayashi, Nakao ; Naumkin, Pavel I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-264649ec914f960b4f3a2e723d45a8c098e5199a5fbff080241175bf9c2484e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Exact sciences and technology</topic><topic>Initial conditions</topic><topic>Initial value problems</topic><topic>Klein-Gordon equation</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Nakao</creatorcontrib><creatorcontrib>Naumkin, Pavel I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Nakao</au><au>Naumkin, Pavel I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic nonlinear Klein-Gordon equation in one dimension</atitle><jtitle>Journal of mathematical physics</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>53</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study the initial value problem for the quadratic nonlinear Klein-Gordon equation v
tt
+ v − v
xx
= λv
2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v
0(x), v
t
(0, x) = v
1(x), x ∈ R, where v
0 and v
1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah [“Normal forms and quadratic nonlinear Klein-Gordon equations,” Commun. Pure Appl. Math. 38, 685–696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort [“Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1,” Ann. Sci. Ec. Normale Super. 34(4), 1–61 (2001)].</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4759156</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2012-10, Vol.53 (10) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_pascalfrancis_primary_26615698 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Asymptotic properties Exact sciences and technology Initial conditions Initial value problems Klein-Gordon equation Mathematical analysis Mathematical methods in physics Mathematics Nonlinearity Physics Sciences and techniques of general use |
title | Quadratic nonlinear Klein-Gordon equation in one dimension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20nonlinear%20Klein-Gordon%20equation%20in%20one%20dimension&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Hayashi,%20Nakao&rft.date=2012-10-01&rft.volume=53&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4759156&rft_dat=%3Cproquest_pasca%3E1323212302%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-264649ec914f960b4f3a2e723d45a8c098e5199a5fbff080241175bf9c2484e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323212302&rft_id=info:pmid/&rfr_iscdi=true |