Loading…
Path-Tracking Maneuvers With Industrial Robot Manipulators Using Uncalibrated Vision and Impedance Control
This paper presents an interaction control strategy for industrial robot manipulators which consists of the combination of a calibration-free, vision-based control method with an impedance-control approach. The vision-based, robot control method known as camera-space manipulation is used to generate...
Saved in:
Published in: | IEEE transactions on human-machine systems 2012-11, Vol.42 (6), p.1716-1729 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an interaction control strategy for industrial robot manipulators which consists of the combination of a calibration-free, vision-based control method with an impedance-control approach. The vision-based, robot control method known as camera-space manipulation is used to generate a given, previously defined trajectory over an arbitrary surface. Then, a kinematic impedance controller is implemented in order to regulate the interaction forces generated by the contact between the robot end-effector and the work surface where the trajectory is traced. The paper presents experimental evidence on how the vision-force sensory fusion is applied to a path-tracking task, using a Fanuc M16-iB industrial robot equipped with a force/torque sensor at the wrist. In this task, several levels of interaction force between the robot end-effector and the surface were defined. As discussed in the paper, such a synergy between the control schemes is seen as a viable alternative for performing industrial maneuvers that require force modulation between the tool held by the robot and the working surface. |
---|---|
ISSN: | 1094-6977 2168-2291 1558-2442 2168-2305 |
DOI: | 10.1109/TSMCC.2012.2218235 |