Loading…

Articulatory Control of HMM-Based Parametric Speech Synthesis Using Feature-Space-Switched Multiple Regression

In previous work we proposed a method to control the characteristics of synthetic speech flexibly by integrating articulatory features into a hidden Markov model (HMM) based parametric speech synthesizer. In this method, a unified acoustic-articulatory model is trained, and context-dependent linear...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2013-01, Vol.21 (1), p.207-219
Main Authors: Zhen-Hua Ling, Richmond, K., Yamagishi, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In previous work we proposed a method to control the characteristics of synthetic speech flexibly by integrating articulatory features into a hidden Markov model (HMM) based parametric speech synthesizer. In this method, a unified acoustic-articulatory model is trained, and context-dependent linear transforms are used to model the dependency between the two feature streams. In this paper, we go significantly further and propose a feature-space-switched multiple regression HMM to improve the performance of articulatory control. A multiple regression HMM (MRHMM) is adopted to model the distribution of acoustic features, with articulatory features used as exogenous "explanatory" variables. A separate Gaussian mixture model (GMM) is introduced to model the articulatory space, and articulatory-to-acoustic regression matrices are trained for each component of this GMM, instead of for the context-dependent states in the HMM. Furthermore, we propose a task-specific context feature tailoring method to ensure compatibility between state context features and articulatory features that are manipulated at synthesis time. The proposed method is evaluated on two tasks, using a speech database with acoustic waveforms and articulatory movements recorded in parallel by electromagnetic articulography (EMA). In a vowel identity modification task, the new method achieves better performance when reconstructing target vowels by varying articulatory inputs than our previous approach. A second vowel creation task shows our new method is highly effective at producing a new vowel from appropriate articulatory representations which, even though no acoustic samples for this vowel are present in the training data, is shown to sound highly natural.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2012.2215600