Loading…

Increasing the Flux Measurement Range of an RF-SQUID Resonant Detection Circuit Using the Robust Symmetrical Number System

The design and simulation of a new low temperature Niobium radio frequency superconducting quantum interference devices (RF-SQUID) flux measurement architecture concept that uses N = 3 RF-SQUID rings (or channels) to significantly extend the range of the flux measurement capability beyond ±Φ 0 /4 is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2013-04, Vol.23 (2), p.1602910-1602910
Main Authors: Wicht, M., Schott, M., Pace, P. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design and simulation of a new low temperature Niobium radio frequency superconducting quantum interference devices (RF-SQUID) flux measurement architecture concept that uses N = 3 RF-SQUID rings (or channels) to significantly extend the range of the flux measurement capability beyond ±Φ 0 /4 is presented. A resonant detection method based on a robust symmetrical number system (RSNS) preprocessing technique is shown to provide a large increase in the flux measurement range while producing a high-resolution representation of the input magnetic field. The RSNS preprocessing is a modular scheme in which a modulus number of comparators is used at the output of each RF SQUID. The number of comparators with logic 1 in each channel represents the integer values within each RSNS modulus sequence. When considered together, the integers within each sequence change one at a time at the next code position, resulting in an integer Gray code property. We show that the RSNS preprocessing has the feature that the maximum nonlinearity is less than a least significant bit.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2013.2250283