Loading…
Increasing the Flux Measurement Range of an RF-SQUID Resonant Detection Circuit Using the Robust Symmetrical Number System
The design and simulation of a new low temperature Niobium radio frequency superconducting quantum interference devices (RF-SQUID) flux measurement architecture concept that uses N = 3 RF-SQUID rings (or channels) to significantly extend the range of the flux measurement capability beyond ±Φ 0 /4 is...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2013-04, Vol.23 (2), p.1602910-1602910 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design and simulation of a new low temperature Niobium radio frequency superconducting quantum interference devices (RF-SQUID) flux measurement architecture concept that uses N = 3 RF-SQUID rings (or channels) to significantly extend the range of the flux measurement capability beyond ±Φ 0 /4 is presented. A resonant detection method based on a robust symmetrical number system (RSNS) preprocessing technique is shown to provide a large increase in the flux measurement range while producing a high-resolution representation of the input magnetic field. The RSNS preprocessing is a modular scheme in which a modulus number of comparators is used at the output of each RF SQUID. The number of comparators with logic 1 in each channel represents the integer values within each RSNS modulus sequence. When considered together, the integers within each sequence change one at a time at the next code position, resulting in an integer Gray code property. We show that the RSNS preprocessing has the feature that the maximum nonlinearity is less than a least significant bit. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2013.2250283 |