Loading…
A Classification of Unimodular Lattice Wiretap Codes in Small Dimensions
Lattice coding over a Gaussian wiretap channel, where an eavesdropper listens to transmissions between a transmitter and a legitimate receiver, is considered. A new lattice invariant called the secrecy gain is used as a code design criterion for wiretap lattice codes since it was shown to characteri...
Saved in:
Published in: | IEEE transactions on information theory 2013-06, Vol.59 (6), p.3295-3303 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lattice coding over a Gaussian wiretap channel, where an eavesdropper listens to transmissions between a transmitter and a legitimate receiver, is considered. A new lattice invariant called the secrecy gain is used as a code design criterion for wiretap lattice codes since it was shown to characterize the confusion that a chosen lattice can cause at the eavesdropper: the higher the secrecy gain of the lattice, the more confusion. In this paper, secrecy gains of extremal odd unimodular lattices as well as unimodular lattices in dimension n , 16 ≤ n ≤ 23, are computed, covering the four extremal odd unimodular lattices and all the 111 nonextremal unimodular lattices (both odd and even), providing thus a classification of the best wiretap lattice codes coming from unimodular lattices in dimension n , 8 |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2013.2246814 |