Loading…
Cryogen-Free Operation of 10 V Programmable Josephson Voltage Standards
Given the recent shortages of liquid helium, cryogen-free operation of superconducting devices, such as programmable Josephson voltage standard (PJVS) systems, has become preferable worldwide, and a necessity in some locations. However, reliable operation on a cryocooler is heavily dependent on the...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.1300605-1300605 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given the recent shortages of liquid helium, cryogen-free operation of superconducting devices, such as programmable Josephson voltage standard (PJVS) systems, has become preferable worldwide, and a necessity in some locations. However, reliable operation on a cryocooler is heavily dependent on the ability to create a constant temperature that is low enough to allow the PJVS junctions to operate uniformly. In this work, we systematically investigated as a function of temperature the performance of NIST 10 V PJVS chips employing \hbox{Nb/Nb}_{x}\hbox{Si}_{1-x}/\hbox{Nb} superconducting junctions. Additionally, we addressed the major factors limiting the performance of a cryocooled PJVS: adequate attenuation of the coldhead temperature oscillations and the minimization thermal gradients between the chip and the cryocooler. Through the development of a robust and reproducible method for soldering chips to a Cu carrier (package), we increased the thermal conductances within the packaging to their practical maximum values. This, in addition to the incorporation of a passive two-stage thermal filter, allows us to confidently predict that the required cooling power for the successful cryogen-free operation of the NIST 10 V PJVS is \sim 0.5 W at 4 K. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2012.2230052 |