Loading…

Pinning and vortex lattice structure in NbTi alloy multilayers

We made thin film multilayers of Nb/sub 0.37/Ti/sub 0.63//Nb and Nb/sub 0.37/Ti/sub 0.63//Ti (d/sub NiTi/=14-27 nm and d/sub N/=4-11 nm) to examine geometries and materials relevant to flux pinning in commercial NbTi conductors. Samples were characterized by transport measurements between 4.2 K and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 1997-06, Vol.7 (2), p.1134-1137
Main Authors: McCambridge, J.D., Rizzo, N.D., Hess, S.T., Wang, J.Q., Ling, X.S., Prober, D.E., Motowidlo, L.R., Zeitlin, B.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We made thin film multilayers of Nb/sub 0.37/Ti/sub 0.63//Nb and Nb/sub 0.37/Ti/sub 0.63//Ti (d/sub NiTi/=14-27 nm and d/sub N/=4-11 nm) to examine geometries and materials relevant to flux pinning in commercial NbTi conductors. Samples were characterized by transport measurements between 4.2 K and T/sub c/, in magnetic fields nearly parallel to the layers, up to 6 T. For some multilayers, pinning forces had a large peak at intermediate fields whose onset occurred near /spl sim/0.2 H/sub c2/. We suggest this peak effect is caused by a change in the vortex lattice structure, driven by the strong intrinsic pinning. We have measured the highest pinning force density (113 GN/m/sup 3/ at 4.2K and 5 T) ever achieved in the NbTi system.
ISSN:1051-8223
1558-2515
DOI:10.1109/77.620691