Loading…
Synthesis and characterization of novel piezoelectric nitrile copolyimide films for high temperature sensor applications
A series of amorphous polyimides and copolyimides that contained nitrile were obtained by a two-step procedure. The first step consisted of a polycondensation reaction of 4,4'-oxydiphtalic anhydride (ODPA) with one or two aromatic diamines, namely 1,3-Bis-2-cyano-3-(3-aminophenoxy)phenoxybenzen...
Saved in:
Published in: | Smart materials and structures 2014-10, Vol.23 (10), p.105015-7 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of amorphous polyimides and copolyimides that contained nitrile were obtained by a two-step procedure. The first step consisted of a polycondensation reaction of 4,4'-oxydiphtalic anhydride (ODPA) with one or two aromatic diamines, namely 1,3-Bis-2-cyano-3-(3-aminophenoxy)phenoxybenzene (diamine 2CN) and 1,3-Bis(3-aminophenoxy)benzene (diamine 0CN). In the second step, a thermal cyclodehydration converted each poly(amic acid) or copoly(amic acid) into their corresponding polyimide films. The piezoelectric response was improved after corona poling of the films. A maximum d33 modulus value of 16 pC N−1 was obtained for the polymide with two cyano groups (poly 2CN). The polarization also showed time and thermal stability up to 160 °C. Additionally, the thermal stability of the amorphous polyimides, ( -CN)APB ODPA, was studied by determining the glass transition temperature (T g ) and thermal decomposition through differential scanning calorimetry (DSC) and thermogravimetric analysis (TG), respectively. The high piezoelectric response (1-16 pC N−1), T g (160-180 °C) and degradation temperature (315-450 °C) make such polyamides excellent candidates for use as high temperature sensors. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/23/10/105015 |