Loading…
Proper complex random processes with applications to information theory
The covariance of complex random variables and processes, when defined consistently with the corresponding notion for real random variables, is shown to be determined by the usual complex covariance together with a quantity called the pseudo-covariance. A characterization of uncorrelatedness and wid...
Saved in:
Published in: | IEEE transactions on information theory 1993-07, Vol.39 (4), p.1293-1302 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The covariance of complex random variables and processes, when defined consistently with the corresponding notion for real random variables, is shown to be determined by the usual complex covariance together with a quantity called the pseudo-covariance. A characterization of uncorrelatedness and wide-sense stationarity in terms of covariance and pseudo-covariance is given. Complex random variables and processes with a vanishing pseudo-covariance are called proper. It is shown that properness is preserved under affine transformations and that the complex-multivariate Gaussian density assumes a natural form only for proper random variables. The maximum-entropy theorem is generalized to the complex-multivariate case. The differential entropy of a complex random vector with a fixed correlation matrix is shown to be maximum if and only if the random vector is proper, Gaussian, and zero-mean. The notion of circular stationarity is introduced. For the class of proper complex random processes, a discrete Fourier transform correspondence is derived relating circular stationarity in the time domain to uncorrelatedness in the frequency domain. An application of the theory is presented.< > |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.243446 |