Loading…
Numerical study of currents and fields in a photoconductive detector
A numerical study of the current, field, and carrier density distributions within a photoconductive detector is presented. The photodetector, an interdigitated Schottky barrier diode, is made with metallic fingers of alternating voltage bias on a thin semiconductor layer grown on a transparent diele...
Saved in:
Published in: | IEEE journal of quantum electronics 1987-07, Vol.23 (7), p.1185-1192 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A numerical study of the current, field, and carrier density distributions within a photoconductive detector is presented. The photodetector, an interdigitated Schottky barrier diode, is made with metallic fingers of alternating voltage bias on a thin semiconductor layer grown on a transparent dielectric substrate. The Poisson and continuity equations for electrons and holes are treated in two dimensions. A modified successive line overrelaxation method, faster than the capacitance matrix method, is developed as the Poisson solver. A simple alternative to the Scharfetter-Gummel treatment of current density is also introduced. We investigate steady-state cases with and without optical illumination, and transient responses to picosecond optical pulses. The steady-state current Shows near saturation with increasing voltage, as observed experimentally. The calculated typical response of a silicon detector to a picosecond optical pulse is a current pulse lasting on the order of 10 ps. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.1987.1073488 |