Loading…
Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates
All known experimental values of turbulent burning velocity have been scrutinized. These number 1650, a significant proportion of which at the higher turbulent Reynolds numbers we measured in a fan-stirred bomb. Dimensionless correlations which have a theoretical basis are presented. These are in te...
Saved in:
Published in: | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1987-12, Vol.414 (1847), p.389-413 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All known experimental values of turbulent burning velocity have been scrutinized. These number 1650, a significant proportion of which at the higher turbulent Reynolds numbers we measured in a fan-stirred bomb. Dimensionless correlations which have a theoretical basis are presented. These are in terms of flame straining rates and the effective r. m. s. turbulent velocity, as well as the laminar burning velocity of the mixture. When a flame develops from an ignition source it is not initially exposed to the lower frequencies of the turbulent spectrum. As the kernel grows the flame is affected by ever-lower frequencies and the turbulent burning velocity increases towards a fully developed value. An experimental dimensionless power spectral density function is presented, and used to show how both effective r. m. s. turbulent velocity and flame straining rate develop in an explosion. The results are relevant to a variety of practical devices, including gasoline engines, as well as atmospheric explosions. |
---|---|
ISSN: | 1364-5021 0080-4630 1471-2946 2053-9169 |
DOI: | 10.1098/rspa.1987.0150 |