Loading…

On the Direct Initiation of a Plane Detonation Wave

It is assumed that energy is transferred at a rapid rate through a plane wall into a spatially uniform and initially stagnant combustible gas mixture. This action generates a shock wave, just as it does in an inert mixture, and also switches on a significant rate of chemical reaction. The Navier-Sto...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1986-11, Vol.408 (1834), p.129-148
Main Authors: Clarke, John Frederick, Kassoy, D. R., Riley, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is assumed that energy is transferred at a rapid rate through a plane wall into a spatially uniform and initially stagnant combustible gas mixture. This action generates a shock wave, just as it does in an inert mixture, and also switches on a significant rate of chemical reaction. The Navier-Stokes equations for plane unsteady flow are integrated numerically in order to reveal the subsequent history of events. Four principal time domains are identified, namely ‘early’, ‘transitional’, ‘formation’ and ‘ZND’. The first contains a conduction-dominated explosion and formation of a shock wave; in the second interval the shock wave is responsible for the acceleration of chemical activity, which becomes intense during the ‘formation’ period. Finally a wave whose structure is in essence that of a ZND detonation wave emerges.
ISSN:1364-5021
0080-4630
1471-2946
2053-9169
DOI:10.1098/rspa.1986.0113