Loading…

Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection

A marker-assisted background selection (MABS)-based gene introgression approach in wheat (Triticum aestivum L.) was optimized, where 97% or more of a recurrent parent genome (RPG) can be recovered in just two backcross (BC) generations. A four-step MABS method was developed based on 'Plabsim�...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2009-06, Vol.4 (6), p.e5752-e5752
Main Authors: Randhawa, Harpinder S, Mutti, Jasdeep S, Kidwell, Kim, Morris, Craig F, Chen, Xianming, Gill, Kulvinder S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c717t-a3be69b975c064646a0ae400dd6de7299a2dfefbf842b730d92d0051b00bcd2c3
cites cdi_FETCH-LOGICAL-c717t-a3be69b975c064646a0ae400dd6de7299a2dfefbf842b730d92d0051b00bcd2c3
container_end_page e5752
container_issue 6
container_start_page e5752
container_title PloS one
container_volume 4
creator Randhawa, Harpinder S
Mutti, Jasdeep S
Kidwell, Kim
Morris, Craig F
Chen, Xianming
Gill, Kulvinder S
description A marker-assisted background selection (MABS)-based gene introgression approach in wheat (Triticum aestivum L.) was optimized, where 97% or more of a recurrent parent genome (RPG) can be recovered in just two backcross (BC) generations. A four-step MABS method was developed based on 'Plabsim' computer simulations and wheat genome structure information. During empirical optimization of this method, double recombinants around the target gene were selected in a step-wise fashion during the two BC cycles followed by selection for recurrent parent genotype on non-carrier chromosomes. The average spacing between carrier chromosome markers was
doi_str_mv 10.1371/journal.pone.0005752
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289205734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473109338</galeid><doaj_id>oai_doaj_org_article_898d8151a89c4ba8aa6d042bc516a6db</doaj_id><sourcerecordid>A473109338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c717t-a3be69b975c064646a0ae400dd6de7299a2dfefbf842b730d92d0051b00bcd2c3</originalsourceid><addsrcrecordid>eNqNk9tuEzEQhlcIREvhDRCshFSJiwQf9niDFCIokYqKmgYurVnbu3HrrFPbW8HbMyGBJggJ5Atb3m_-2Rn_kyTPKRlTXtI3127wPdjx2vV6TAjJy5w9SI5pzdmoYIQ_3DsfJU9CuEaGV0XxODmidVZllNHj5PYS1kal0Kv0Cnyno1bprI_edV6HYFyfujY9070OqemjSz-79WDBp1-XGmI6HWw0d-BDugim79JP4G-0H00wMmyU3oG86bwbUH2urZYRBZ8mj1qwQT_b7SfJ4sP7q-nH0fnF2Ww6OR_JkpZxBLzRRd3UZS5JkeECAjojRKlC6ZLVNTDV6rZpq4w1JSeqZgoLpA0hjVRM8pPk5VZ3bV0Qu24FQVlVM2wWz5CYbQnl4FqsvVmB_y4cGPHzwvlOgI9GWi2qulIVzSlUtcwaqAAKRTCxzGmBxwa13u6yDc1KK6mxh2APRA-_9GYpOncnWFFleZWjwOlOwLvbQYcoViZIbS302g1BFCWnJcvYP0FGGPqDlQi--gP8exPGW6oDrNP0rcPfk7iUXhmJ3moN3k8yTE9qzisMeH0QgEzU32IHQwhiNr_8f_biyyF7useivWxcBmeHjWfCIZhtQeldCF63v7tMidiMxq86xWY0xG40MOzF_gvdB-1m4d4wLTgBnTdBLOaMUE5oUZaMFfwHaTcULw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289205734</pqid></control><display><type>article</type><title>Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Randhawa, Harpinder S ; Mutti, Jasdeep S ; Kidwell, Kim ; Morris, Craig F ; Chen, Xianming ; Gill, Kulvinder S</creator><contributor>Dilkes, Brian P.</contributor><creatorcontrib>Randhawa, Harpinder S ; Mutti, Jasdeep S ; Kidwell, Kim ; Morris, Craig F ; Chen, Xianming ; Gill, Kulvinder S ; Dilkes, Brian P.</creatorcontrib><description>A marker-assisted background selection (MABS)-based gene introgression approach in wheat (Triticum aestivum L.) was optimized, where 97% or more of a recurrent parent genome (RPG) can be recovered in just two backcross (BC) generations. A four-step MABS method was developed based on 'Plabsim' computer simulations and wheat genome structure information. During empirical optimization of this method, double recombinants around the target gene were selected in a step-wise fashion during the two BC cycles followed by selection for recurrent parent genotype on non-carrier chromosomes. The average spacing between carrier chromosome markers was &lt;4 cM. For non-carrier chromosome markers that flanked each of the 48 wheat gene-rich regions, this distance was approximately 12 cM. Employed to introgress seedling stripe rust (Puccinia striiformis f. sp. tritici) resistance gene Yr15 into the spring wheat cultivar 'Zak', marker analysis of 2,187 backcross-derived progeny resulted in the recovery of a BC2F2:3 plant with 97% of the recurrent parent genome. In contrast, only 82% of the recurrent parent genome was recovered in phenotypically selected BC4F7 plants developed without MABS. Field evaluation results from 17 locations indicated that the MABS-derived line was either equal or superior to the recurrent parent for the tested agronomic characteristics. Based on these results, MABS is recommended as a strategy for rapidly introgressing a targeted gene into a wheat genotype in just two backcross generations while recovering 97% or more of the recurrent parent genotype.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005752</identifier><identifier>PMID: 19484121</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agronomy ; backcrossing ; Biotechnology ; Biotechnology/Plant Biotechnology ; Carriers ; Chromosome Mapping ; Chromosomes ; Chromosomes - ultrastructure ; Computer Simulation ; Crosses, Genetic ; Cultivars ; disease resistance ; Empirical analysis ; Genes ; Genes, Plant ; Genetic aspects ; Genetic Markers ; Genetic research ; Genetics and Genomics ; Genetics and Genomics/Bioinformatics ; genome ; Genome, Plant ; Genomes ; Genomics ; Genotype ; Heterozygote ; introgression ; marker-assisted background selection ; marker-assisted selection ; Markers ; Mathematical models ; Models, Genetic ; Optimization ; Oryza ; Plant Biology/Agricultural Biotechnology ; plant breeding ; Plant Diseases - genetics ; Plant pathology ; Population ; Probability ; Progeny ; Puccinia ; Puccinia recondita ; Recombinants ; Recombination, Genetic ; Rice ; rust diseases ; Seedlings ; Simulation ; simulation models ; Soil sciences ; Spring wheat ; Stripe rust ; Triticum - genetics ; Triticum aestivum ; Triticum dicoccum ; Wheat</subject><ispartof>PloS one, 2009-06, Vol.4 (6), p.e5752-e5752</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Randhawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Randhawa et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c717t-a3be69b975c064646a0ae400dd6de7299a2dfefbf842b730d92d0051b00bcd2c3</citedby><cites>FETCH-LOGICAL-c717t-a3be69b975c064646a0ae400dd6de7299a2dfefbf842b730d92d0051b00bcd2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289205734/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289205734?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19484121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dilkes, Brian P.</contributor><creatorcontrib>Randhawa, Harpinder S</creatorcontrib><creatorcontrib>Mutti, Jasdeep S</creatorcontrib><creatorcontrib>Kidwell, Kim</creatorcontrib><creatorcontrib>Morris, Craig F</creatorcontrib><creatorcontrib>Chen, Xianming</creatorcontrib><creatorcontrib>Gill, Kulvinder S</creatorcontrib><title>Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A marker-assisted background selection (MABS)-based gene introgression approach in wheat (Triticum aestivum L.) was optimized, where 97% or more of a recurrent parent genome (RPG) can be recovered in just two backcross (BC) generations. A four-step MABS method was developed based on 'Plabsim' computer simulations and wheat genome structure information. During empirical optimization of this method, double recombinants around the target gene were selected in a step-wise fashion during the two BC cycles followed by selection for recurrent parent genotype on non-carrier chromosomes. The average spacing between carrier chromosome markers was &lt;4 cM. For non-carrier chromosome markers that flanked each of the 48 wheat gene-rich regions, this distance was approximately 12 cM. Employed to introgress seedling stripe rust (Puccinia striiformis f. sp. tritici) resistance gene Yr15 into the spring wheat cultivar 'Zak', marker analysis of 2,187 backcross-derived progeny resulted in the recovery of a BC2F2:3 plant with 97% of the recurrent parent genome. In contrast, only 82% of the recurrent parent genome was recovered in phenotypically selected BC4F7 plants developed without MABS. Field evaluation results from 17 locations indicated that the MABS-derived line was either equal or superior to the recurrent parent for the tested agronomic characteristics. Based on these results, MABS is recommended as a strategy for rapidly introgressing a targeted gene into a wheat genotype in just two backcross generations while recovering 97% or more of the recurrent parent genotype.</description><subject>Agronomy</subject><subject>backcrossing</subject><subject>Biotechnology</subject><subject>Biotechnology/Plant Biotechnology</subject><subject>Carriers</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes - ultrastructure</subject><subject>Computer Simulation</subject><subject>Crosses, Genetic</subject><subject>Cultivars</subject><subject>disease resistance</subject><subject>Empirical analysis</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic Markers</subject><subject>Genetic research</subject><subject>Genetics and Genomics</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>genome</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Heterozygote</subject><subject>introgression</subject><subject>marker-assisted background selection</subject><subject>marker-assisted selection</subject><subject>Markers</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Optimization</subject><subject>Oryza</subject><subject>Plant Biology/Agricultural Biotechnology</subject><subject>plant breeding</subject><subject>Plant Diseases - genetics</subject><subject>Plant pathology</subject><subject>Population</subject><subject>Probability</subject><subject>Progeny</subject><subject>Puccinia</subject><subject>Puccinia recondita</subject><subject>Recombinants</subject><subject>Recombination, Genetic</subject><subject>Rice</subject><subject>rust diseases</subject><subject>Seedlings</subject><subject>Simulation</subject><subject>simulation models</subject><subject>Soil sciences</subject><subject>Spring wheat</subject><subject>Stripe rust</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Triticum dicoccum</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tuEzEQhlcIREvhDRCshFSJiwQf9niDFCIokYqKmgYurVnbu3HrrFPbW8HbMyGBJggJ5Atb3m_-2Rn_kyTPKRlTXtI3127wPdjx2vV6TAjJy5w9SI5pzdmoYIQ_3DsfJU9CuEaGV0XxODmidVZllNHj5PYS1kal0Kv0Cnyno1bprI_edV6HYFyfujY9070OqemjSz-79WDBp1-XGmI6HWw0d-BDugim79JP4G-0H00wMmyU3oG86bwbUH2urZYRBZ8mj1qwQT_b7SfJ4sP7q-nH0fnF2Ww6OR_JkpZxBLzRRd3UZS5JkeECAjojRKlC6ZLVNTDV6rZpq4w1JSeqZgoLpA0hjVRM8pPk5VZ3bV0Qu24FQVlVM2wWz5CYbQnl4FqsvVmB_y4cGPHzwvlOgI9GWi2qulIVzSlUtcwaqAAKRTCxzGmBxwa13u6yDc1KK6mxh2APRA-_9GYpOncnWFFleZWjwOlOwLvbQYcoViZIbS302g1BFCWnJcvYP0FGGPqDlQi--gP8exPGW6oDrNP0rcPfk7iUXhmJ3moN3k8yTE9qzisMeH0QgEzU32IHQwhiNr_8f_biyyF7useivWxcBmeHjWfCIZhtQeldCF63v7tMidiMxq86xWY0xG40MOzF_gvdB-1m4d4wLTgBnTdBLOaMUE5oUZaMFfwHaTcULw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Randhawa, Harpinder S</creator><creator>Mutti, Jasdeep S</creator><creator>Kidwell, Kim</creator><creator>Morris, Craig F</creator><creator>Chen, Xianming</creator><creator>Gill, Kulvinder S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090601</creationdate><title>Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection</title><author>Randhawa, Harpinder S ; Mutti, Jasdeep S ; Kidwell, Kim ; Morris, Craig F ; Chen, Xianming ; Gill, Kulvinder S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c717t-a3be69b975c064646a0ae400dd6de7299a2dfefbf842b730d92d0051b00bcd2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agronomy</topic><topic>backcrossing</topic><topic>Biotechnology</topic><topic>Biotechnology/Plant Biotechnology</topic><topic>Carriers</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes - ultrastructure</topic><topic>Computer Simulation</topic><topic>Crosses, Genetic</topic><topic>Cultivars</topic><topic>disease resistance</topic><topic>Empirical analysis</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic Markers</topic><topic>Genetic research</topic><topic>Genetics and Genomics</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>genome</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Heterozygote</topic><topic>introgression</topic><topic>marker-assisted background selection</topic><topic>marker-assisted selection</topic><topic>Markers</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Optimization</topic><topic>Oryza</topic><topic>Plant Biology/Agricultural Biotechnology</topic><topic>plant breeding</topic><topic>Plant Diseases - genetics</topic><topic>Plant pathology</topic><topic>Population</topic><topic>Probability</topic><topic>Progeny</topic><topic>Puccinia</topic><topic>Puccinia recondita</topic><topic>Recombinants</topic><topic>Recombination, Genetic</topic><topic>Rice</topic><topic>rust diseases</topic><topic>Seedlings</topic><topic>Simulation</topic><topic>simulation models</topic><topic>Soil sciences</topic><topic>Spring wheat</topic><topic>Stripe rust</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Triticum dicoccum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Randhawa, Harpinder S</creatorcontrib><creatorcontrib>Mutti, Jasdeep S</creatorcontrib><creatorcontrib>Kidwell, Kim</creatorcontrib><creatorcontrib>Morris, Craig F</creatorcontrib><creatorcontrib>Chen, Xianming</creatorcontrib><creatorcontrib>Gill, Kulvinder S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical &amp; Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Randhawa, Harpinder S</au><au>Mutti, Jasdeep S</au><au>Kidwell, Kim</au><au>Morris, Craig F</au><au>Chen, Xianming</au><au>Gill, Kulvinder S</au><au>Dilkes, Brian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>4</volume><issue>6</issue><spage>e5752</spage><epage>e5752</epage><pages>e5752-e5752</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A marker-assisted background selection (MABS)-based gene introgression approach in wheat (Triticum aestivum L.) was optimized, where 97% or more of a recurrent parent genome (RPG) can be recovered in just two backcross (BC) generations. A four-step MABS method was developed based on 'Plabsim' computer simulations and wheat genome structure information. During empirical optimization of this method, double recombinants around the target gene were selected in a step-wise fashion during the two BC cycles followed by selection for recurrent parent genotype on non-carrier chromosomes. The average spacing between carrier chromosome markers was &lt;4 cM. For non-carrier chromosome markers that flanked each of the 48 wheat gene-rich regions, this distance was approximately 12 cM. Employed to introgress seedling stripe rust (Puccinia striiformis f. sp. tritici) resistance gene Yr15 into the spring wheat cultivar 'Zak', marker analysis of 2,187 backcross-derived progeny resulted in the recovery of a BC2F2:3 plant with 97% of the recurrent parent genome. In contrast, only 82% of the recurrent parent genome was recovered in phenotypically selected BC4F7 plants developed without MABS. Field evaluation results from 17 locations indicated that the MABS-derived line was either equal or superior to the recurrent parent for the tested agronomic characteristics. Based on these results, MABS is recommended as a strategy for rapidly introgressing a targeted gene into a wheat genotype in just two backcross generations while recovering 97% or more of the recurrent parent genotype.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19484121</pmid><doi>10.1371/journal.pone.0005752</doi><tpages>e5752</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-06, Vol.4 (6), p.e5752-e5752
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289205734
source Open Access: PubMed Central; ProQuest - Publicly Available Content Database
subjects Agronomy
backcrossing
Biotechnology
Biotechnology/Plant Biotechnology
Carriers
Chromosome Mapping
Chromosomes
Chromosomes - ultrastructure
Computer Simulation
Crosses, Genetic
Cultivars
disease resistance
Empirical analysis
Genes
Genes, Plant
Genetic aspects
Genetic Markers
Genetic research
Genetics and Genomics
Genetics and Genomics/Bioinformatics
genome
Genome, Plant
Genomes
Genomics
Genotype
Heterozygote
introgression
marker-assisted background selection
marker-assisted selection
Markers
Mathematical models
Models, Genetic
Optimization
Oryza
Plant Biology/Agricultural Biotechnology
plant breeding
Plant Diseases - genetics
Plant pathology
Population
Probability
Progeny
Puccinia
Puccinia recondita
Recombinants
Recombination, Genetic
Rice
rust diseases
Seedlings
Simulation
simulation models
Soil sciences
Spring wheat
Stripe rust
Triticum - genetics
Triticum aestivum
Triticum dicoccum
Wheat
title Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20Targeted%20Introgression%20of%20Genes%20into%20Popular%20Wheat%20Cultivars%20Using%20Marker-Assisted%20Background%20Selection&rft.jtitle=PloS%20one&rft.au=Randhawa,%20Harpinder%20S&rft.date=2009-06-01&rft.volume=4&rft.issue=6&rft.spage=e5752&rft.epage=e5752&rft.pages=e5752-e5752&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005752&rft_dat=%3Cgale_plos_%3EA473109338%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c717t-a3be69b975c064646a0ae400dd6de7299a2dfefbf842b730d92d0051b00bcd2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289205734&rft_id=info:pmid/19484121&rft_galeid=A473109338&rfr_iscdi=true