Loading…

Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions

Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dorm...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-12, Vol.7 (12), p.e51532-e51532
Main Authors: Müller, Kerstin, Bouyer, Daniel, Schnittger, Arp, Kermode, Allison R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13
cites cdi_FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13
container_end_page e51532
container_issue 12
container_start_page e51532
container_title PloS one
container_volume 7
creator Müller, Kerstin
Bouyer, Daniel
Schnittger, Arp
Kermode, Allison R
description Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.
doi_str_mv 10.1371/journal.pone.0051532
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327136408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477083915</galeid><doaj_id>oai_doaj_org_article_79aa6dc5c3d04a93953bb2e5008600f8</doaj_id><sourcerecordid>A477083915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13</originalsourceid><addsrcrecordid>eNqNk99r2zAQx83YWLts_8HYDIOxPiSTfJYVvQxCaddAoLBf7E3IshwrKFYm2WH57ystbolLH4aNZU6f-97pTpckbzGaYaD488b2rhVmtrOtmiFEMIHsWXKOGWTTIkPw_OT_LHnl_SZAMC-Kl8lZBlmOELDz5PfV3pq-07YVTptDKm3rldurKm2074J0ulVdczAiIml1aMVWS59WvdPtOvUqgEbXaioP0qi0c6L1OqL-dfKiFsarN8M6SX5eX_24vJmubr8uLxerqaQs66a5IhQgz4AhACmJJHNgJc0zxGqhqpwWWfjUWEhSi7KkYScXBFGSVwiowDBJ3h91d8Z6PhTFcwwZxVDkaB6I5ZGorNjwndNb4Q7cCs3_Gaxbc-E6HfLnlAlRVCELqFAuGDACZZkpgtC8QKiOWl-GaH25VZVUbTiyGYmOd1rd8LXdcyCYzYuY7sVRoHnkdrNY8WiLoUJ70T6yn4Zgzv7ple_4VnupjBGtsn04Y6waIRDeSfLhEfp0JQZqLcJhdVvbkKOMonyRUxoIhqPW7AkqPJUKvQ9XotbBPnK4GDkEplN_u7XovefL79_-n739NWY_nrCNEqZr_HBb_RjMj6B01nun6ofKYsTjsNxXg8dh4cOwBLd3p818cLqfDrgDXWIN9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327136408</pqid></control><display><type>article</type><title>Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions</title><source>PubMed Central</source><source>ProQuest Publicly Available Content</source><creator>Müller, Kerstin ; Bouyer, Daniel ; Schnittger, Arp ; Kermode, Allison R</creator><creatorcontrib>Müller, Kerstin ; Bouyer, Daniel ; Schnittger, Arp ; Kermode, Allison R</creatorcontrib><description>Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0051532</identifier><identifier>PMID: 23240039</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Angiosperms ; Annual variations ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biochemistry, Molecular Biology ; Biology ; Cellular Biology ; Chromatin ; Chromatin - genetics ; Chromatin - physiology ; Dormancy ; Environmental changes ; Environmental conditions ; Epigenetics ; Evolution, Molecular ; Gene expression ; Gene Expression Regulation, Plant ; Gene silencing ; Gene-Environment Interaction ; Genomes ; Germination ; Gymnosperms ; Histone-Lysine N-Methyltransferase - genetics ; Histone-Lysine N-Methyltransferase - metabolism ; Histones - genetics ; Histones - metabolism ; Life cycle engineering ; Life cycles ; Life Sciences ; Methylation ; Molecular biology ; Phase transitions ; Physcomitrella patens ; Plant Dormancy - genetics ; Plant Dormancy - physiology ; Regulators ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Seasonal variations ; Seasons ; Seedlings ; Seedlings - genetics ; Seedlings - metabolism ; Seedlings - physiology ; Seeds ; Seeds - growth &amp; development ; Seeds - physiology ; Synchronism</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e51532-e51532</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Müller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2012 Müller et al 2012 Müller et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13</citedby><cites>FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1327136408/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1327136408?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23240039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00863710$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Kerstin</creatorcontrib><creatorcontrib>Bouyer, Daniel</creatorcontrib><creatorcontrib>Schnittger, Arp</creatorcontrib><creatorcontrib>Kermode, Allison R</creatorcontrib><title>Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.</description><subject>Angiosperms</subject><subject>Annual variations</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology</subject><subject>Cellular Biology</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - physiology</subject><subject>Dormancy</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Epigenetics</subject><subject>Evolution, Molecular</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene silencing</subject><subject>Gene-Environment Interaction</subject><subject>Genomes</subject><subject>Germination</subject><subject>Gymnosperms</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Life cycle engineering</subject><subject>Life cycles</subject><subject>Life Sciences</subject><subject>Methylation</subject><subject>Molecular biology</subject><subject>Phase transitions</subject><subject>Physcomitrella patens</subject><subject>Plant Dormancy - genetics</subject><subject>Plant Dormancy - physiology</subject><subject>Regulators</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Seedlings - metabolism</subject><subject>Seedlings - physiology</subject><subject>Seeds</subject><subject>Seeds - growth &amp; development</subject><subject>Seeds - physiology</subject><subject>Synchronism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99r2zAQx83YWLts_8HYDIOxPiSTfJYVvQxCaddAoLBf7E3IshwrKFYm2WH57ystbolLH4aNZU6f-97pTpckbzGaYaD488b2rhVmtrOtmiFEMIHsWXKOGWTTIkPw_OT_LHnl_SZAMC-Kl8lZBlmOELDz5PfV3pq-07YVTptDKm3rldurKm2074J0ulVdczAiIml1aMVWS59WvdPtOvUqgEbXaioP0qi0c6L1OqL-dfKiFsarN8M6SX5eX_24vJmubr8uLxerqaQs66a5IhQgz4AhACmJJHNgJc0zxGqhqpwWWfjUWEhSi7KkYScXBFGSVwiowDBJ3h91d8Z6PhTFcwwZxVDkaB6I5ZGorNjwndNb4Q7cCs3_Gaxbc-E6HfLnlAlRVCELqFAuGDACZZkpgtC8QKiOWl-GaH25VZVUbTiyGYmOd1rd8LXdcyCYzYuY7sVRoHnkdrNY8WiLoUJ70T6yn4Zgzv7ple_4VnupjBGtsn04Y6waIRDeSfLhEfp0JQZqLcJhdVvbkKOMonyRUxoIhqPW7AkqPJUKvQ9XotbBPnK4GDkEplN_u7XovefL79_-n739NWY_nrCNEqZr_HBb_RjMj6B01nun6ofKYsTjsNxXg8dh4cOwBLd3p818cLqfDrgDXWIN9Q</recordid><startdate>20121211</startdate><enddate>20121211</enddate><creator>Müller, Kerstin</creator><creator>Bouyer, Daniel</creator><creator>Schnittger, Arp</creator><creator>Kermode, Allison R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121211</creationdate><title>Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions</title><author>Müller, Kerstin ; Bouyer, Daniel ; Schnittger, Arp ; Kermode, Allison R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Angiosperms</topic><topic>Annual variations</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology</topic><topic>Cellular Biology</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - physiology</topic><topic>Dormancy</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Epigenetics</topic><topic>Evolution, Molecular</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene silencing</topic><topic>Gene-Environment Interaction</topic><topic>Genomes</topic><topic>Germination</topic><topic>Gymnosperms</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Life cycle engineering</topic><topic>Life cycles</topic><topic>Life Sciences</topic><topic>Methylation</topic><topic>Molecular biology</topic><topic>Phase transitions</topic><topic>Physcomitrella patens</topic><topic>Plant Dormancy - genetics</topic><topic>Plant Dormancy - physiology</topic><topic>Regulators</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Seedlings - metabolism</topic><topic>Seedlings - physiology</topic><topic>Seeds</topic><topic>Seeds - growth &amp; development</topic><topic>Seeds - physiology</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Kerstin</creatorcontrib><creatorcontrib>Bouyer, Daniel</creatorcontrib><creatorcontrib>Schnittger, Arp</creatorcontrib><creatorcontrib>Kermode, Allison R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Journals</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Materials Science &amp; Engineering</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>Proquest Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Publicly Available Content</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection (ProQuest)</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Open Access Full Text</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Kerstin</au><au>Bouyer, Daniel</au><au>Schnittger, Arp</au><au>Kermode, Allison R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-11</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e51532</spage><epage>e51532</epage><pages>e51532-e51532</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23240039</pmid><doi>10.1371/journal.pone.0051532</doi><tpages>e51532</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-12, Vol.7 (12), p.e51532-e51532
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1327136408
source PubMed Central; ProQuest Publicly Available Content
subjects Angiosperms
Annual variations
Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biochemistry, Molecular Biology
Biology
Cellular Biology
Chromatin
Chromatin - genetics
Chromatin - physiology
Dormancy
Environmental changes
Environmental conditions
Epigenetics
Evolution, Molecular
Gene expression
Gene Expression Regulation, Plant
Gene silencing
Gene-Environment Interaction
Genomes
Germination
Gymnosperms
Histone-Lysine N-Methyltransferase - genetics
Histone-Lysine N-Methyltransferase - metabolism
Histones - genetics
Histones - metabolism
Life cycle engineering
Life cycles
Life Sciences
Methylation
Molecular biology
Phase transitions
Physcomitrella patens
Plant Dormancy - genetics
Plant Dormancy - physiology
Regulators
Repressor Proteins - genetics
Repressor Proteins - metabolism
Seasonal variations
Seasons
Seedlings
Seedlings - genetics
Seedlings - metabolism
Seedlings - physiology
Seeds
Seeds - growth & development
Seeds - physiology
Synchronism
title Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T18%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionarily%20conserved%20histone%20methylation%20dynamics%20during%20seed%20life-cycle%20transitions&rft.jtitle=PloS%20one&rft.au=M%C3%BCller,%20Kerstin&rft.date=2012-12-11&rft.volume=7&rft.issue=12&rft.spage=e51532&rft.epage=e51532&rft.pages=e51532-e51532&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0051532&rft_dat=%3Cgale_plos_%3EA477083915%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1327136408&rft_id=info:pmid/23240039&rft_galeid=A477083915&rfr_iscdi=true