Loading…
Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions
Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dorm...
Saved in:
Published in: | PloS one 2012-12, Vol.7 (12), p.e51532-e51532 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13 |
container_end_page | e51532 |
container_issue | 12 |
container_start_page | e51532 |
container_title | PloS one |
container_volume | 7 |
creator | Müller, Kerstin Bouyer, Daniel Schnittger, Arp Kermode, Allison R |
description | Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms. |
doi_str_mv | 10.1371/journal.pone.0051532 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327136408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477083915</galeid><doaj_id>oai_doaj_org_article_79aa6dc5c3d04a93953bb2e5008600f8</doaj_id><sourcerecordid>A477083915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13</originalsourceid><addsrcrecordid>eNqNk99r2zAQx83YWLts_8HYDIOxPiSTfJYVvQxCaddAoLBf7E3IshwrKFYm2WH57ystbolLH4aNZU6f-97pTpckbzGaYaD488b2rhVmtrOtmiFEMIHsWXKOGWTTIkPw_OT_LHnl_SZAMC-Kl8lZBlmOELDz5PfV3pq-07YVTptDKm3rldurKm2074J0ulVdczAiIml1aMVWS59WvdPtOvUqgEbXaioP0qi0c6L1OqL-dfKiFsarN8M6SX5eX_24vJmubr8uLxerqaQs66a5IhQgz4AhACmJJHNgJc0zxGqhqpwWWfjUWEhSi7KkYScXBFGSVwiowDBJ3h91d8Z6PhTFcwwZxVDkaB6I5ZGorNjwndNb4Q7cCs3_Gaxbc-E6HfLnlAlRVCELqFAuGDACZZkpgtC8QKiOWl-GaH25VZVUbTiyGYmOd1rd8LXdcyCYzYuY7sVRoHnkdrNY8WiLoUJ70T6yn4Zgzv7ple_4VnupjBGtsn04Y6waIRDeSfLhEfp0JQZqLcJhdVvbkKOMonyRUxoIhqPW7AkqPJUKvQ9XotbBPnK4GDkEplN_u7XovefL79_-n739NWY_nrCNEqZr_HBb_RjMj6B01nun6ofKYsTjsNxXg8dh4cOwBLd3p818cLqfDrgDXWIN9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327136408</pqid></control><display><type>article</type><title>Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions</title><source>PubMed Central</source><source>ProQuest Publicly Available Content</source><creator>Müller, Kerstin ; Bouyer, Daniel ; Schnittger, Arp ; Kermode, Allison R</creator><creatorcontrib>Müller, Kerstin ; Bouyer, Daniel ; Schnittger, Arp ; Kermode, Allison R</creatorcontrib><description>Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0051532</identifier><identifier>PMID: 23240039</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Angiosperms ; Annual variations ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biochemistry, Molecular Biology ; Biology ; Cellular Biology ; Chromatin ; Chromatin - genetics ; Chromatin - physiology ; Dormancy ; Environmental changes ; Environmental conditions ; Epigenetics ; Evolution, Molecular ; Gene expression ; Gene Expression Regulation, Plant ; Gene silencing ; Gene-Environment Interaction ; Genomes ; Germination ; Gymnosperms ; Histone-Lysine N-Methyltransferase - genetics ; Histone-Lysine N-Methyltransferase - metabolism ; Histones - genetics ; Histones - metabolism ; Life cycle engineering ; Life cycles ; Life Sciences ; Methylation ; Molecular biology ; Phase transitions ; Physcomitrella patens ; Plant Dormancy - genetics ; Plant Dormancy - physiology ; Regulators ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Seasonal variations ; Seasons ; Seedlings ; Seedlings - genetics ; Seedlings - metabolism ; Seedlings - physiology ; Seeds ; Seeds - growth & development ; Seeds - physiology ; Synchronism</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e51532-e51532</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Müller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2012 Müller et al 2012 Müller et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13</citedby><cites>FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1327136408/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1327136408?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23240039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00863710$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Kerstin</creatorcontrib><creatorcontrib>Bouyer, Daniel</creatorcontrib><creatorcontrib>Schnittger, Arp</creatorcontrib><creatorcontrib>Kermode, Allison R</creatorcontrib><title>Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.</description><subject>Angiosperms</subject><subject>Annual variations</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology</subject><subject>Cellular Biology</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - physiology</subject><subject>Dormancy</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Epigenetics</subject><subject>Evolution, Molecular</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene silencing</subject><subject>Gene-Environment Interaction</subject><subject>Genomes</subject><subject>Germination</subject><subject>Gymnosperms</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Life cycle engineering</subject><subject>Life cycles</subject><subject>Life Sciences</subject><subject>Methylation</subject><subject>Molecular biology</subject><subject>Phase transitions</subject><subject>Physcomitrella patens</subject><subject>Plant Dormancy - genetics</subject><subject>Plant Dormancy - physiology</subject><subject>Regulators</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Seedlings - metabolism</subject><subject>Seedlings - physiology</subject><subject>Seeds</subject><subject>Seeds - growth & development</subject><subject>Seeds - physiology</subject><subject>Synchronism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99r2zAQx83YWLts_8HYDIOxPiSTfJYVvQxCaddAoLBf7E3IshwrKFYm2WH57ystbolLH4aNZU6f-97pTpckbzGaYaD488b2rhVmtrOtmiFEMIHsWXKOGWTTIkPw_OT_LHnl_SZAMC-Kl8lZBlmOELDz5PfV3pq-07YVTptDKm3rldurKm2074J0ulVdczAiIml1aMVWS59WvdPtOvUqgEbXaioP0qi0c6L1OqL-dfKiFsarN8M6SX5eX_24vJmubr8uLxerqaQs66a5IhQgz4AhACmJJHNgJc0zxGqhqpwWWfjUWEhSi7KkYScXBFGSVwiowDBJ3h91d8Z6PhTFcwwZxVDkaB6I5ZGorNjwndNb4Q7cCs3_Gaxbc-E6HfLnlAlRVCELqFAuGDACZZkpgtC8QKiOWl-GaH25VZVUbTiyGYmOd1rd8LXdcyCYzYuY7sVRoHnkdrNY8WiLoUJ70T6yn4Zgzv7ple_4VnupjBGtsn04Y6waIRDeSfLhEfp0JQZqLcJhdVvbkKOMonyRUxoIhqPW7AkqPJUKvQ9XotbBPnK4GDkEplN_u7XovefL79_-n739NWY_nrCNEqZr_HBb_RjMj6B01nun6ofKYsTjsNxXg8dh4cOwBLd3p818cLqfDrgDXWIN9Q</recordid><startdate>20121211</startdate><enddate>20121211</enddate><creator>Müller, Kerstin</creator><creator>Bouyer, Daniel</creator><creator>Schnittger, Arp</creator><creator>Kermode, Allison R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121211</creationdate><title>Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions</title><author>Müller, Kerstin ; Bouyer, Daniel ; Schnittger, Arp ; Kermode, Allison R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Angiosperms</topic><topic>Annual variations</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology</topic><topic>Cellular Biology</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - physiology</topic><topic>Dormancy</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Epigenetics</topic><topic>Evolution, Molecular</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene silencing</topic><topic>Gene-Environment Interaction</topic><topic>Genomes</topic><topic>Germination</topic><topic>Gymnosperms</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Life cycle engineering</topic><topic>Life cycles</topic><topic>Life Sciences</topic><topic>Methylation</topic><topic>Molecular biology</topic><topic>Phase transitions</topic><topic>Physcomitrella patens</topic><topic>Plant Dormancy - genetics</topic><topic>Plant Dormancy - physiology</topic><topic>Regulators</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Seedlings - metabolism</topic><topic>Seedlings - physiology</topic><topic>Seeds</topic><topic>Seeds - growth & development</topic><topic>Seeds - physiology</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Kerstin</creatorcontrib><creatorcontrib>Bouyer, Daniel</creatorcontrib><creatorcontrib>Schnittger, Arp</creatorcontrib><creatorcontrib>Kermode, Allison R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Journals</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Materials Science & Engineering</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>ProQuest Health & Medical Collection</collection><collection>Proquest Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Publicly Available Content</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection (ProQuest)</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Open Access Full Text</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Kerstin</au><au>Bouyer, Daniel</au><au>Schnittger, Arp</au><au>Kermode, Allison R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-11</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e51532</spage><epage>e51532</epage><pages>e51532-e51532</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23240039</pmid><doi>10.1371/journal.pone.0051532</doi><tpages>e51532</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-12, Vol.7 (12), p.e51532-e51532 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1327136408 |
source | PubMed Central; ProQuest Publicly Available Content |
subjects | Angiosperms Annual variations Arabidopsis Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biochemistry, Molecular Biology Biology Cellular Biology Chromatin Chromatin - genetics Chromatin - physiology Dormancy Environmental changes Environmental conditions Epigenetics Evolution, Molecular Gene expression Gene Expression Regulation, Plant Gene silencing Gene-Environment Interaction Genomes Germination Gymnosperms Histone-Lysine N-Methyltransferase - genetics Histone-Lysine N-Methyltransferase - metabolism Histones - genetics Histones - metabolism Life cycle engineering Life cycles Life Sciences Methylation Molecular biology Phase transitions Physcomitrella patens Plant Dormancy - genetics Plant Dormancy - physiology Regulators Repressor Proteins - genetics Repressor Proteins - metabolism Seasonal variations Seasons Seedlings Seedlings - genetics Seedlings - metabolism Seedlings - physiology Seeds Seeds - growth & development Seeds - physiology Synchronism |
title | Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T18%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionarily%20conserved%20histone%20methylation%20dynamics%20during%20seed%20life-cycle%20transitions&rft.jtitle=PloS%20one&rft.au=M%C3%BCller,%20Kerstin&rft.date=2012-12-11&rft.volume=7&rft.issue=12&rft.spage=e51532&rft.epage=e51532&rft.pages=e51532-e51532&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0051532&rft_dat=%3Cgale_plos_%3EA477083915%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c792t-4e57334239033cc5c5839b74209faed4762d47f1ac5fabb77424a50754d037a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1327136408&rft_id=info:pmid/23240039&rft_galeid=A477083915&rfr_iscdi=true |