Loading…

A genetic RNAi screen for IP₃/Ca²⁺ coupled GPCRs in Drosophila identifies the PdfR as a regulator of insect flight

Insect flight is regulated by various sensory inputs and neuromodulatory circuits which function in synchrony to control and fine-tune the final behavioral outcome. The cellular and molecular bases of flight neuromodulatory circuits are not well defined. In Drosophila melanogaster, it is known that...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2013, Vol.9 (10), p.e1003849-e1003849
Main Authors: Agrawal, Tarjani, Sadaf, Sufia, Hasan, Gaiti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Insect flight is regulated by various sensory inputs and neuromodulatory circuits which function in synchrony to control and fine-tune the final behavioral outcome. The cellular and molecular bases of flight neuromodulatory circuits are not well defined. In Drosophila melanogaster, it is known that neuronal IP3 receptor mediated Ca²⁺ signaling and store-operated Ca²⁺ entry (SOCE) are required for air-puff stimulated adult flight. However, G-protein coupled receptors (GPCRs) that activate intracellular Ca²⁺ signaling in the context of flight are unknown in Drosophila. We performed a genetic RNAi screen to identify GPCRs that regulate flight by activating the IPIP₃ receptor. Among the 108 GPCRs screened, we discovered 5 IPIP₃/Ca²⁺ linked GPCRs that are necessary for maintenance of air-puff stimulated flight. Analysis of their temporal requirement established that while some GPCRs are required only during flight circuit development, others are required both in pupal development as well as during adult flight. Interestingly, our study identified the Pigment Dispersing Factor Receptor (PdfR) as a regulator of flight circuit development and as a modulator of acute flight. From the analysis of PdfR expressing neurons relevant for flight and its well-defined roles in other behavioral paradigms, we propose that PdfR signaling functions systemically to integrate multiple sensory inputs and modulate downstream motor behavior.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1003849