Loading…

Odorants for surveillance and control of the Asian Citrus Psyllid (Diaphorina citri)

The Asian Citrus Psyllid (ACP), Diaphorina citri, can transmit the bacterium Candidatus Liberibacter while feeding on citrus flush shoots. This bacterium causes Huanglongbing (HLB), a major disease of citrus cultivation worldwide necessitating the development of new tools for ACP surveillance and co...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-10, Vol.9 (10), p.e109236
Main Authors: Coutinho-Abreu, Iliano V, Forster, Lisa, Guda, Tom, Ray, Anandasankar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Asian Citrus Psyllid (ACP), Diaphorina citri, can transmit the bacterium Candidatus Liberibacter while feeding on citrus flush shoots. This bacterium causes Huanglongbing (HLB), a major disease of citrus cultivation worldwide necessitating the development of new tools for ACP surveillance and control. The olfactory system of ACP is sensitive to variety of odorants released by citrus plants and offers an opportunity to develop new attractants and repellents. In this study, we performed single-unit electrophysiology to identify odorants that are strong activators, inhibitors, and prolonged activators of ACP odorant receptor neurons (ORNs). We identified a suite of odorants that activated the ORNs with high specificity and sensitivity, which may be useful in eliciting behavior such as attraction. In separate experiments, we also identified odorants that evoked prolonged ORN responses and antagonistic odorants able to suppress neuronal responses to activators, both of which can be useful in lowering attraction to hosts. In field trials, we tested the electrophysiologically identified activating odorants and identified a 3-odor blend that enhances trap catches by ∼230%. These findings provide a set of odorants that can be used to develop affordable and safe odor-based surveillance and masking strategies for this dangerous pest insect.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0109236