Loading…

BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities

Recent advances focusing on the metabolic interactions within and between cellular populations have emphasized the importance of microbial communities for human health. Constraint-based modeling, with flux balance analysis in particular, has been established as a key approach for studying microbial...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2017-05, Vol.13 (5), p.e1005544-e1005544
Main Authors: Bauer, Eugen, Zimmermann, Johannes, Baldini, Federico, Thiele, Ines, Kaleta, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advances focusing on the metabolic interactions within and between cellular populations have emphasized the importance of microbial communities for human health. Constraint-based modeling, with flux balance analysis in particular, has been established as a key approach for studying microbial metabolism, whereas individual-based modeling has been commonly used to study complex dynamics between interacting organisms. In this study, we combine both techniques into the R package BacArena (https://cran.r-project.org/package=BacArena) to generate novel biological insights into Pseudomonas aeruginosa biofilm formation as well as a seven species model community of the human gut. For our P. aeruginosa model, we found that cross-feeding of fermentation products cause a spatial differentiation of emerging metabolic phenotypes in the biofilm over time. In the human gut model community, we found that spatial gradients of mucus glycans are important for niche formations which shape the overall community structure. Additionally, we could provide novel hypothesis concerning the metabolic interactions between the microbes. These results demonstrate the importance of spatial and temporal multi-scale modeling approaches such as BacArena.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1005544