Loading…
Gene selection tool (GST): A R-based tool for genetic disorders based on the sliding-window proportion test using whole-exome sequencing data
Whole-exome sequencing (WES) can identify causative mutations in hereditary diseases. However, WES data might have a large candidate variant list, including false positives. Moreover, in families, it is more difficult to select disease-associated variants because many variants are shared among membe...
Saved in:
Published in: | PloS one 2017-09, Vol.12 (9), p.e0185514-e0185514 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Whole-exome sequencing (WES) can identify causative mutations in hereditary diseases. However, WES data might have a large candidate variant list, including false positives. Moreover, in families, it is more difficult to select disease-associated variants because many variants are shared among members. To reduce false positives and extract accurate candidates, we used a multilocus variant instead of a single-locus variant (SNV). We set up a specific window to analyze the multilocus variant and devised a sliding-window approach to observe all variants. We developed the gene selection tool (GST) based on proportion tests for linkage analysis using WES data. This tool is R program coded and has high sensitivity. We tested our code to find the gene for hereditary spastic paraplegia using SNVs from a specific family and identified the gene known to cause the disease in a significant gene list. The list identified other genes that might be associated with the disease. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0185514 |