Loading…

A human body physiological feature selection algorithm based on filtering and improved clustering

The body composition model is closely related to the physiological characteristics of the human body. At the same time there can be a large number of physiological characteristics, many of which may be redundant or irrelevant. In existing human physiological feature selection algorithms, it is diffi...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-10, Vol.13 (10), p.e0204816-e0204816
Main Authors: Chen, Bo, Yu, Jie, Gao, Xiu-E, Zheng, Qing-Guo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The body composition model is closely related to the physiological characteristics of the human body. At the same time there can be a large number of physiological characteristics, many of which may be redundant or irrelevant. In existing human physiological feature selection algorithms, it is difficult to overcome the impact that redundancy and irrelevancy may have on human body composition modeling. This suggests a role for selection algorithms, where human physiological characteristics are identified using a combination of filtering and improved clustering. To do this, a feature filtering method based on Hilbert-Schmidt dependency criteria is first of all used to eliminate irrelevant features. After this, it is possible to use improved Chameleon clustering to increase the combination of sub-clusters amongst the characteristics, thereby removing any redundant features to obtain a candidate feature set for human body composition modeling. Method We report here on the use of an algorithm to filter the characteristic parameters in INBODY770 (this paper used INBODY 770 as body composition analyzer.) measurement data, which has three commonly-used impedance bands (1 kHZ, 250 kHZ, 500 kHZ). This algorithm is able to filter out parameters that have a low correlation with body composition BFM. The algorithm is also able to draw upon improved clustering techniques to reduce the initial feature set from 29 parameters to 10 parameters for any parameters of the 250 kHZ band that remain after filtering. In addition, we also examined the impact of different sample sizes on feature selection. The proposed algorithm is able to remove irrelevant and redundant features and the resulting correlation between the model and the body composition (BFM which is a whole body fat evaluation can better assess the body's overall fat and muscle composition.) is 0.978, thereby providing an improved model for prediction with a relative error of less than 0.12.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0204816