Loading…

Relationship between hemodynamic parameters and severity of ischemia-induced left ventricular wall thickening during cardiopulmonary resuscitation of consistent quality

Ischemia-induced left ventricular (LV) wall thickening compromises the hemodynamic effectiveness of cardiopulmonary resuscitation (CPR). However, accurate assessment of the severity of ischemia-induced LV wall thickening during CPR is challenging. We investigated, in a swine model, whether hemodynam...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-11, Vol.13 (11), p.e0208140-e0208140
Main Authors: Park, Se-Hyeok, Lim, Yong Deok, Jung, Yong Hun, Jeung, Kyung Woon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ischemia-induced left ventricular (LV) wall thickening compromises the hemodynamic effectiveness of cardiopulmonary resuscitation (CPR). However, accurate assessment of the severity of ischemia-induced LV wall thickening during CPR is challenging. We investigated, in a swine model, whether hemodynamic parameters, including end-tidal carbon dioxide (ETCO2) level, are linearly associated with the severity of ischemia-induced LV wall thickening during CPR of consistent quality. We retrospectively analyzed 96 datasets for ETCO2 level, arterial pressure, LV wall thickness, and the percent of measured end-diastolic volume (%EDV) relative to EDV at the onset of ventricular fibrillation from eight pigs. Animals underwent advanced cardiovascular life support based on resuscitation guidelines. During CPR, LV wall thickness progressively increased while %EDV progressively decreased. Systolic and diastolic arterial pressure and ETCO2 level were significantly correlated with LV wall thickness and %EDV. Linear mixed effect models revealed that, after adjustment for significant covariates, systolic and diastolic arterial pressure were not associated with LV wall thickness or %EDV. ETCO2 level had a significant linear relationship with %EDV (P = 0.004). However, it could explain only 28.2% of the total variance of %EDV in our model. In conclusion, none of the hemodynamic parameters examined in this study appeared to provide sufficient information on the severity of ischemia-induced LV wall thickening.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0208140