Loading…
Low altitude simulation without hypoxia improves left ventricular function after myocardial infarction by reducing ventricular afterload
Humans have a lower risk of death from myocardial infarction (MI) living at low elevations (5000 m, and intermittent hypobaric hypoxia post-MI can reduce MI size in rodents, and it is believed that hypoxia is the key stimulus. To explore mechanisms beyond hypoxia we studied whether altitude simulati...
Saved in:
Published in: | PloS one 2019-05, Vol.14 (5), p.e0215814-e0215814 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-de75345639961cc341028dd2a66a3e13dfde5c2f1a9a2d2f080ea943a9e347733 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-de75345639961cc341028dd2a66a3e13dfde5c2f1a9a2d2f080ea943a9e347733 |
container_end_page | e0215814 |
container_issue | 5 |
container_start_page | e0215814 |
container_title | PloS one |
container_volume | 14 |
creator | Shahid, Anmol Patel, Vaibhav B Morton, Jude S Stenson, Trevor H Davidge, Sandra T Oudit, Gavin Y McMurtry, Michael S |
description | Humans have a lower risk of death from myocardial infarction (MI) living at low elevations (5000 m, and intermittent hypobaric hypoxia post-MI can reduce MI size in rodents, and it is believed that hypoxia is the key stimulus. To explore mechanisms beyond hypoxia we studied whether altitude simulation |
doi_str_mv | 10.1371/journal.pone.0215814 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2233259002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_504764fc6d0548878a5ce206e36721f2</doaj_id><sourcerecordid>2233856050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-de75345639961cc341028dd2a66a3e13dfde5c2f1a9a2d2f080ea943a9e347733</originalsourceid><addsrcrecordid>eNptUsuOEzEQHCEQuyz8AQJLXLgk-D0zFyS04rFSJC5wtnr9SBx5xsH2ZMkf8NlMMrOrDeJky11V3dWuqnpN8JKwmnzYxiH1EJa72NslpkQ0hD-pLknL6EJSzJ4-ul9UL3LeYixYI-Xz6oIRIjAn9LL6s4p3CELxZTAWZd8NAYqPPbrzZROHgjaHXfztAflul-LeZhSsK2hv-5K8HsEJuaHXJwq4YhPqDlFDMh4C8r2DNNVuDyhZM2jfr8_IJ06IYF5WzxyEbF_N51X188vnH9ffFqvvX2-uP60WWlBZFsbWgnEhWdtKojXjBNPGGApSArOEGWes0NQRaIEa6nCDLbScQWsZr2vGrqq3k-4uxKzmJWZFKWNUtBjTEXEzIUyErdol30E6qAhenR5iWitIxetg1bjEWnKnpcGCN03dgNCWYmmZrClxR62Pc7fhtrNGH51DOBM9r_R-o9Zxr6TgfPzTUeD9LJDir8HmojqftQ0BehuHae5GSCzwCH33D_T_7viE0inmnKx7GIZgdQzWPUsdg6XmYI20N4-NPJDuk8T-AuWUz1s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233259002</pqid></control><display><type>article</type><title>Low altitude simulation without hypoxia improves left ventricular function after myocardial infarction by reducing ventricular afterload</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Shahid, Anmol ; Patel, Vaibhav B ; Morton, Jude S ; Stenson, Trevor H ; Davidge, Sandra T ; Oudit, Gavin Y ; McMurtry, Michael S</creator><contributor>Lionetti, Vincenzo</contributor><creatorcontrib>Shahid, Anmol ; Patel, Vaibhav B ; Morton, Jude S ; Stenson, Trevor H ; Davidge, Sandra T ; Oudit, Gavin Y ; McMurtry, Michael S ; Lionetti, Vincenzo</creatorcontrib><description>Humans have a lower risk of death from myocardial infarction (MI) living at low elevations (<2500 m), which are not high enough to induce hypoxia. Both chronic hypoxia pre-MI, achieved by altitude simulation >5000 m, and intermittent hypobaric hypoxia post-MI can reduce MI size in rodents, and it is believed that hypoxia is the key stimulus. To explore mechanisms beyond hypoxia we studied whether altitude simulation <2500 m would also be associated with reduced infarct size. We performed left-anterior descending artery ligation on C57BL6 mice. Control mice (n = 12) recovered at 754 mmHg (atmospheric pressure, control), and treatment group mice (n = 13) were placed in a hypobaric chamber to recover 3-hours daily at 714 mmHg for 1 week. Echocardiographic evaluation of left ventricular function was performed on Day 0, Day 1 and Day 8. Intermittent hypobaric treatment was associated with a 14.2±5.3% improvement in ejection fraction for treatment group mice (p<0.01 vs. Day 1), with no change observed in control mice. Cardiac output, stroke volume, and infarct size were also improved in treated mice, but no changes were observed in HIF-1 activation or neovascularization. Next, we studied the acute hemodynamic effects of low altitude stimulation in intact mice breathing 100% oxygen using left ventricular catheterization and recording of pressure-volume loops. Acute reductions in barometric pressure from 754 mmHg to 714 mmHg and 674 mmHg were associated with reduced systemic vascular resistance, increased stroke volume and cardiac output, and no change in blood pressure or heart rate. Ex-vivo vascular function was studied using murine mesenteric artery segments. Acute reductions in barometric pressure were associated with greater vascular distensibility. We conclude that intermittent hypobaric treatment using simulated altitudes <2500 m reduces infarct size and increases ventricular function post-MI, and that these changes are related to altered arterial function and not hypoxia-associated neovascularization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0215814</identifier><identifier>PMID: 31150412</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Altitude ; Altitude effects ; Altitude simulation ; Animals ; Atmospheric pressure ; Biology and Life Sciences ; Blood pressure ; Cardiac output ; Cardiovascular disease ; Catheterization ; Cerebral infarction ; Consciousness ; Coronary vessels ; Gene Expression Regulation ; Gynecology ; Heart attacks ; Heart failure ; Heart rate ; Hemodynamics ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Ischemia ; Low altitude ; Medicine ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Mortality ; Mouse devices ; Myocardial infarction ; Myocardial Infarction - metabolism ; Myocardial Infarction - physiopathology ; Obstetrics ; Ostomy ; Oxygen ; Physiology ; Polyethylene ; Recording ; Rodent control ; Rodents ; Sea level ; Simulation ; Stroke ; Stroke Volume ; Vascularization ; Ventricle ; Ventricular Function, Left</subject><ispartof>PloS one, 2019-05, Vol.14 (5), p.e0215814-e0215814</ispartof><rights>2019 Shahid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Shahid et al 2019 Shahid et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-de75345639961cc341028dd2a66a3e13dfde5c2f1a9a2d2f080ea943a9e347733</citedby><cites>FETCH-LOGICAL-c526t-de75345639961cc341028dd2a66a3e13dfde5c2f1a9a2d2f080ea943a9e347733</cites><orcidid>0000-0001-9912-2136 ; 0000-0001-7164-1137 ; 0000-0001-5638-4988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2233259002/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2233259002?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31150412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lionetti, Vincenzo</contributor><creatorcontrib>Shahid, Anmol</creatorcontrib><creatorcontrib>Patel, Vaibhav B</creatorcontrib><creatorcontrib>Morton, Jude S</creatorcontrib><creatorcontrib>Stenson, Trevor H</creatorcontrib><creatorcontrib>Davidge, Sandra T</creatorcontrib><creatorcontrib>Oudit, Gavin Y</creatorcontrib><creatorcontrib>McMurtry, Michael S</creatorcontrib><title>Low altitude simulation without hypoxia improves left ventricular function after myocardial infarction by reducing ventricular afterload</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Humans have a lower risk of death from myocardial infarction (MI) living at low elevations (<2500 m), which are not high enough to induce hypoxia. Both chronic hypoxia pre-MI, achieved by altitude simulation >5000 m, and intermittent hypobaric hypoxia post-MI can reduce MI size in rodents, and it is believed that hypoxia is the key stimulus. To explore mechanisms beyond hypoxia we studied whether altitude simulation <2500 m would also be associated with reduced infarct size. We performed left-anterior descending artery ligation on C57BL6 mice. Control mice (n = 12) recovered at 754 mmHg (atmospheric pressure, control), and treatment group mice (n = 13) were placed in a hypobaric chamber to recover 3-hours daily at 714 mmHg for 1 week. Echocardiographic evaluation of left ventricular function was performed on Day 0, Day 1 and Day 8. Intermittent hypobaric treatment was associated with a 14.2±5.3% improvement in ejection fraction for treatment group mice (p<0.01 vs. Day 1), with no change observed in control mice. Cardiac output, stroke volume, and infarct size were also improved in treated mice, but no changes were observed in HIF-1 activation or neovascularization. Next, we studied the acute hemodynamic effects of low altitude stimulation in intact mice breathing 100% oxygen using left ventricular catheterization and recording of pressure-volume loops. Acute reductions in barometric pressure from 754 mmHg to 714 mmHg and 674 mmHg were associated with reduced systemic vascular resistance, increased stroke volume and cardiac output, and no change in blood pressure or heart rate. Ex-vivo vascular function was studied using murine mesenteric artery segments. Acute reductions in barometric pressure were associated with greater vascular distensibility. We conclude that intermittent hypobaric treatment using simulated altitudes <2500 m reduces infarct size and increases ventricular function post-MI, and that these changes are related to altered arterial function and not hypoxia-associated neovascularization.</description><subject>Altitude</subject><subject>Altitude effects</subject><subject>Altitude simulation</subject><subject>Animals</subject><subject>Atmospheric pressure</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Cardiac output</subject><subject>Cardiovascular disease</subject><subject>Catheterization</subject><subject>Cerebral infarction</subject><subject>Consciousness</subject><subject>Coronary vessels</subject><subject>Gene Expression Regulation</subject><subject>Gynecology</subject><subject>Heart attacks</subject><subject>Heart failure</subject><subject>Heart rate</subject><subject>Hemodynamics</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Ischemia</subject><subject>Low altitude</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mortality</subject><subject>Mouse devices</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - physiopathology</subject><subject>Obstetrics</subject><subject>Ostomy</subject><subject>Oxygen</subject><subject>Physiology</subject><subject>Polyethylene</subject><subject>Recording</subject><subject>Rodent control</subject><subject>Rodents</subject><subject>Sea level</subject><subject>Simulation</subject><subject>Stroke</subject><subject>Stroke Volume</subject><subject>Vascularization</subject><subject>Ventricle</subject><subject>Ventricular Function, Left</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsuOEzEQHCEQuyz8AQJLXLgk-D0zFyS04rFSJC5wtnr9SBx5xsH2ZMkf8NlMMrOrDeJky11V3dWuqnpN8JKwmnzYxiH1EJa72NslpkQ0hD-pLknL6EJSzJ4-ul9UL3LeYixYI-Xz6oIRIjAn9LL6s4p3CELxZTAWZd8NAYqPPbrzZROHgjaHXfztAflul-LeZhSsK2hv-5K8HsEJuaHXJwq4YhPqDlFDMh4C8r2DNNVuDyhZM2jfr8_IJ06IYF5WzxyEbF_N51X188vnH9ffFqvvX2-uP60WWlBZFsbWgnEhWdtKojXjBNPGGApSArOEGWes0NQRaIEa6nCDLbScQWsZr2vGrqq3k-4uxKzmJWZFKWNUtBjTEXEzIUyErdol30E6qAhenR5iWitIxetg1bjEWnKnpcGCN03dgNCWYmmZrClxR62Pc7fhtrNGH51DOBM9r_R-o9Zxr6TgfPzTUeD9LJDir8HmojqftQ0BehuHae5GSCzwCH33D_T_7viE0inmnKx7GIZgdQzWPUsdg6XmYI20N4-NPJDuk8T-AuWUz1s</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Shahid, Anmol</creator><creator>Patel, Vaibhav B</creator><creator>Morton, Jude S</creator><creator>Stenson, Trevor H</creator><creator>Davidge, Sandra T</creator><creator>Oudit, Gavin Y</creator><creator>McMurtry, Michael S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9912-2136</orcidid><orcidid>https://orcid.org/0000-0001-7164-1137</orcidid><orcidid>https://orcid.org/0000-0001-5638-4988</orcidid></search><sort><creationdate>20190531</creationdate><title>Low altitude simulation without hypoxia improves left ventricular function after myocardial infarction by reducing ventricular afterload</title><author>Shahid, Anmol ; Patel, Vaibhav B ; Morton, Jude S ; Stenson, Trevor H ; Davidge, Sandra T ; Oudit, Gavin Y ; McMurtry, Michael S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-de75345639961cc341028dd2a66a3e13dfde5c2f1a9a2d2f080ea943a9e347733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Altitude</topic><topic>Altitude effects</topic><topic>Altitude simulation</topic><topic>Animals</topic><topic>Atmospheric pressure</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Cardiac output</topic><topic>Cardiovascular disease</topic><topic>Catheterization</topic><topic>Cerebral infarction</topic><topic>Consciousness</topic><topic>Coronary vessels</topic><topic>Gene Expression Regulation</topic><topic>Gynecology</topic><topic>Heart attacks</topic><topic>Heart failure</topic><topic>Heart rate</topic><topic>Hemodynamics</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Ischemia</topic><topic>Low altitude</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mortality</topic><topic>Mouse devices</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - physiopathology</topic><topic>Obstetrics</topic><topic>Ostomy</topic><topic>Oxygen</topic><topic>Physiology</topic><topic>Polyethylene</topic><topic>Recording</topic><topic>Rodent control</topic><topic>Rodents</topic><topic>Sea level</topic><topic>Simulation</topic><topic>Stroke</topic><topic>Stroke Volume</topic><topic>Vascularization</topic><topic>Ventricle</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahid, Anmol</creatorcontrib><creatorcontrib>Patel, Vaibhav B</creatorcontrib><creatorcontrib>Morton, Jude S</creatorcontrib><creatorcontrib>Stenson, Trevor H</creatorcontrib><creatorcontrib>Davidge, Sandra T</creatorcontrib><creatorcontrib>Oudit, Gavin Y</creatorcontrib><creatorcontrib>McMurtry, Michael S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahid, Anmol</au><au>Patel, Vaibhav B</au><au>Morton, Jude S</au><au>Stenson, Trevor H</au><au>Davidge, Sandra T</au><au>Oudit, Gavin Y</au><au>McMurtry, Michael S</au><au>Lionetti, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low altitude simulation without hypoxia improves left ventricular function after myocardial infarction by reducing ventricular afterload</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-05-31</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><spage>e0215814</spage><epage>e0215814</epage><pages>e0215814-e0215814</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Humans have a lower risk of death from myocardial infarction (MI) living at low elevations (<2500 m), which are not high enough to induce hypoxia. Both chronic hypoxia pre-MI, achieved by altitude simulation >5000 m, and intermittent hypobaric hypoxia post-MI can reduce MI size in rodents, and it is believed that hypoxia is the key stimulus. To explore mechanisms beyond hypoxia we studied whether altitude simulation <2500 m would also be associated with reduced infarct size. We performed left-anterior descending artery ligation on C57BL6 mice. Control mice (n = 12) recovered at 754 mmHg (atmospheric pressure, control), and treatment group mice (n = 13) were placed in a hypobaric chamber to recover 3-hours daily at 714 mmHg for 1 week. Echocardiographic evaluation of left ventricular function was performed on Day 0, Day 1 and Day 8. Intermittent hypobaric treatment was associated with a 14.2±5.3% improvement in ejection fraction for treatment group mice (p<0.01 vs. Day 1), with no change observed in control mice. Cardiac output, stroke volume, and infarct size were also improved in treated mice, but no changes were observed in HIF-1 activation or neovascularization. Next, we studied the acute hemodynamic effects of low altitude stimulation in intact mice breathing 100% oxygen using left ventricular catheterization and recording of pressure-volume loops. Acute reductions in barometric pressure from 754 mmHg to 714 mmHg and 674 mmHg were associated with reduced systemic vascular resistance, increased stroke volume and cardiac output, and no change in blood pressure or heart rate. Ex-vivo vascular function was studied using murine mesenteric artery segments. Acute reductions in barometric pressure were associated with greater vascular distensibility. We conclude that intermittent hypobaric treatment using simulated altitudes <2500 m reduces infarct size and increases ventricular function post-MI, and that these changes are related to altered arterial function and not hypoxia-associated neovascularization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31150412</pmid><doi>10.1371/journal.pone.0215814</doi><orcidid>https://orcid.org/0000-0001-9912-2136</orcidid><orcidid>https://orcid.org/0000-0001-7164-1137</orcidid><orcidid>https://orcid.org/0000-0001-5638-4988</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-05, Vol.14 (5), p.e0215814-e0215814 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2233259002 |
source | Publicly Available Content Database; PubMed Central |
subjects | Altitude Altitude effects Altitude simulation Animals Atmospheric pressure Biology and Life Sciences Blood pressure Cardiac output Cardiovascular disease Catheterization Cerebral infarction Consciousness Coronary vessels Gene Expression Regulation Gynecology Heart attacks Heart failure Heart rate Hemodynamics Hypoxia Hypoxia-inducible factor 1 Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Ischemia Low altitude Medicine Medicine and Health Sciences Mice Mice, Inbred C57BL Mortality Mouse devices Myocardial infarction Myocardial Infarction - metabolism Myocardial Infarction - physiopathology Obstetrics Ostomy Oxygen Physiology Polyethylene Recording Rodent control Rodents Sea level Simulation Stroke Stroke Volume Vascularization Ventricle Ventricular Function, Left |
title | Low altitude simulation without hypoxia improves left ventricular function after myocardial infarction by reducing ventricular afterload |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20altitude%20simulation%20without%20hypoxia%20improves%20left%20ventricular%20function%20after%20myocardial%20infarction%20by%20reducing%20ventricular%20afterload&rft.jtitle=PloS%20one&rft.au=Shahid,%20Anmol&rft.date=2019-05-31&rft.volume=14&rft.issue=5&rft.spage=e0215814&rft.epage=e0215814&rft.pages=e0215814-e0215814&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0215814&rft_dat=%3Cproquest_plos_%3E2233856050%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-de75345639961cc341028dd2a66a3e13dfde5c2f1a9a2d2f080ea943a9e347733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233259002&rft_id=info:pmid/31150412&rfr_iscdi=true |