Loading…

Evaluation of ultra-early and dose-dependent edema and ultrastructural changes in the myocyte during anti-hypertensive drug delivery in the spontaneously hypertensive rat model

Quantifying dose-dependent ultra-early edema and ultrastructural changes in the myocyte after drug delivery is important for the development of new mixed calcium channel blockers (CCBs). Arterial cannulation was used to measure mean arterial pressure in real time; simultaneously, magnetic resonance...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-04, Vol.15 (4), p.e0231244-e0231244
Main Authors: Guo, Hua, Wang, Yuqing, Cai, Wei, He, Chengqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c475t-523b8424dd32371ca1e7264e6c5249f9c909db3cf0c53dc1ea156c7d9e8c775d3
container_end_page e0231244
container_issue 4
container_start_page e0231244
container_title PloS one
container_volume 15
creator Guo, Hua
Wang, Yuqing
Cai, Wei
He, Chengqi
description Quantifying dose-dependent ultra-early edema and ultrastructural changes in the myocyte after drug delivery is important for the development of new mixed calcium channel blockers (CCBs). Arterial cannulation was used to measure mean arterial pressure in real time; simultaneously, magnetic resonance imaging proton density mapping was used to quantify edema 5-55 min after the delivery of L-type CCBs, T- and L-type CCBs, and solvent to a spontaneously hypertensive rat model. Transmission electron microscopy was used to show ultrastructural changes in the myocyte. Analysis of variance showed significant differences among the three groups in mean arterial pressure reduction (F = 246.36, P = 5.75E-25), ultra-early level of edema (ULE) (F = 175.49, P = 5.62E-22), and dose-dependent level of edema (DLE) (F = 199.48, P = 4.28E-23). Compared with the solvent's mean arterial pressure reduction (2.65±6.56±1.64), ULE (1.16±0.09±0.02), and DLE (0.0010±0.0001±0.0000), post hoc tests showed that T- and L-type CCBs had better mean arterial pressure reduction (90.67±11.58±2.90, P = 1.06E-24 vs. 68.34±15.19±3.80, P = 1.76E-12), lower ULE (1.53±0.14±0.04, P = 4.74E-9 vs. 2.08±0.18±0.04, P = 2.68E-22), and lower DLE (0.0025±0.0004±0.0001, P = 1.14E-11 vs. 0.0047±0.0008±0.0002, P = 2.10E-11) than L- type CCBs. Transmission electron microscopy showed that T- and L-type CCBs caused fewer ultrastructural changes in the myocytes after drug delivery than L-type CCBs. T- and L-type CCBs produced less ultra-early and dose-dependent edema, fewer ultrastructural changes in the myocyte, and a greater antihypertensive effect. Proton density mapping combined with arterial cannulation and transmission electron microscopy allowed for quantification of ultra-early and dose-dependent edema, antihypertensive efficacy, and ultrastructural changes in the myocyte. This is important for the evaluation of induced vasodilatory edema.
doi_str_mv 10.1371/journal.pone.0231244
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2390632127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0bdf75b0aa1c4051a1629b17382f32b9</doaj_id><sourcerecordid>2391978488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-523b8424dd32371ca1e7264e6c5249f9c909db3cf0c53dc1ea156c7d9e8c775d3</originalsourceid><addsrcrecordid>eNptUk2P0zAQjRCIXRb-AQJLXLik-CtxckFCqwVWWokLnC3HnrSpHLvYTqX8K34ibpuutoiTR5733sw8vaJ4S_CKMEE-bf0UnLKrnXewwpQRyvmz4pq0jJY1xez5k_qqeBXjFuOKNXX9srhilLYNFfy6-HO3V3ZSafAO-R5NNgVVggp2RsoZZHyE0sAOnAGXEBgY1bFxBMYUJp2moCzSG-XWENHgUNoAGmev5wTITGFw68xIQ7mZdxASuDjscyNMa2TA5jrMZ1bMtyTlwE8xz7_AB5XQ6DPhdfGiVzbCm-W9KX59vft5-718-PHt_vbLQ6m5qFJZUdY1nHJjGM1uaUVA0JpDrSvK277VLW5Nx3SPdcWMJqBIVWthWmi0EJVhN8X7k-7O-igXs6OkrMU1o4SKjLg_IYxXW7kLw6jCLL0a5PHDh7VUIQ3agsSd6UXVYaWI5rgiitS07YhgDe0Z7dqs9XmZNnUjGJ3Nzq5eiF523LCRa7-XIivx5rDMx0Ug-N8TxCTHIWqw9mTnYW_SioY3TYZ--Af6_-v4CaWDjzFA_7gMwfIQwDNLHgIolwBm2runhzySzoljfwHhW97U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390632127</pqid></control><display><type>article</type><title>Evaluation of ultra-early and dose-dependent edema and ultrastructural changes in the myocyte during anti-hypertensive drug delivery in the spontaneously hypertensive rat model</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Guo, Hua ; Wang, Yuqing ; Cai, Wei ; He, Chengqi</creator><contributor>Mishra, Yogendra Kumar</contributor><creatorcontrib>Guo, Hua ; Wang, Yuqing ; Cai, Wei ; He, Chengqi ; Mishra, Yogendra Kumar</creatorcontrib><description>Quantifying dose-dependent ultra-early edema and ultrastructural changes in the myocyte after drug delivery is important for the development of new mixed calcium channel blockers (CCBs). Arterial cannulation was used to measure mean arterial pressure in real time; simultaneously, magnetic resonance imaging proton density mapping was used to quantify edema 5-55 min after the delivery of L-type CCBs, T- and L-type CCBs, and solvent to a spontaneously hypertensive rat model. Transmission electron microscopy was used to show ultrastructural changes in the myocyte. Analysis of variance showed significant differences among the three groups in mean arterial pressure reduction (F = 246.36, P = 5.75E-25), ultra-early level of edema (ULE) (F = 175.49, P = 5.62E-22), and dose-dependent level of edema (DLE) (F = 199.48, P = 4.28E-23). Compared with the solvent's mean arterial pressure reduction (2.65±6.56±1.64), ULE (1.16±0.09±0.02), and DLE (0.0010±0.0001±0.0000), post hoc tests showed that T- and L-type CCBs had better mean arterial pressure reduction (90.67±11.58±2.90, P = 1.06E-24 vs. 68.34±15.19±3.80, P = 1.76E-12), lower ULE (1.53±0.14±0.04, P = 4.74E-9 vs. 2.08±0.18±0.04, P = 2.68E-22), and lower DLE (0.0025±0.0004±0.0001, P = 1.14E-11 vs. 0.0047±0.0008±0.0002, P = 2.10E-11) than L- type CCBs. Transmission electron microscopy showed that T- and L-type CCBs caused fewer ultrastructural changes in the myocytes after drug delivery than L-type CCBs. T- and L-type CCBs produced less ultra-early and dose-dependent edema, fewer ultrastructural changes in the myocyte, and a greater antihypertensive effect. Proton density mapping combined with arterial cannulation and transmission electron microscopy allowed for quantification of ultra-early and dose-dependent edema, antihypertensive efficacy, and ultrastructural changes in the myocyte. This is important for the evaluation of induced vasodilatory edema.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0231244</identifier><identifier>PMID: 32298274</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antihypertensives ; Biology and Life Sciences ; Blood pressure ; Calcium ; Calcium channel blockers ; Cannulation ; Drug delivery ; Drug delivery systems ; Drug dosages ; Edema ; Electron microscopy ; Evaluation ; Hypertension ; Laboratory animals ; Magnetic resonance ; Magnetic resonance imaging ; Mapping ; Medicine ; Medicine and Health Sciences ; Microscopy ; Myocytes ; Pressure reduction ; Proton density (concentration) ; Real time ; Rehabilitation ; Research and Analysis Methods ; Solvents ; Studies ; Transmission electron microscopy ; Variance analysis</subject><ispartof>PloS one, 2020-04, Vol.15 (4), p.e0231244-e0231244</ispartof><rights>2020 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Guo et al 2020 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c475t-523b8424dd32371ca1e7264e6c5249f9c909db3cf0c53dc1ea156c7d9e8c775d3</cites><orcidid>0000-0001-9500-6197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2390632127/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2390632127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32298274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mishra, Yogendra Kumar</contributor><creatorcontrib>Guo, Hua</creatorcontrib><creatorcontrib>Wang, Yuqing</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>He, Chengqi</creatorcontrib><title>Evaluation of ultra-early and dose-dependent edema and ultrastructural changes in the myocyte during anti-hypertensive drug delivery in the spontaneously hypertensive rat model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Quantifying dose-dependent ultra-early edema and ultrastructural changes in the myocyte after drug delivery is important for the development of new mixed calcium channel blockers (CCBs). Arterial cannulation was used to measure mean arterial pressure in real time; simultaneously, magnetic resonance imaging proton density mapping was used to quantify edema 5-55 min after the delivery of L-type CCBs, T- and L-type CCBs, and solvent to a spontaneously hypertensive rat model. Transmission electron microscopy was used to show ultrastructural changes in the myocyte. Analysis of variance showed significant differences among the three groups in mean arterial pressure reduction (F = 246.36, P = 5.75E-25), ultra-early level of edema (ULE) (F = 175.49, P = 5.62E-22), and dose-dependent level of edema (DLE) (F = 199.48, P = 4.28E-23). Compared with the solvent's mean arterial pressure reduction (2.65±6.56±1.64), ULE (1.16±0.09±0.02), and DLE (0.0010±0.0001±0.0000), post hoc tests showed that T- and L-type CCBs had better mean arterial pressure reduction (90.67±11.58±2.90, P = 1.06E-24 vs. 68.34±15.19±3.80, P = 1.76E-12), lower ULE (1.53±0.14±0.04, P = 4.74E-9 vs. 2.08±0.18±0.04, P = 2.68E-22), and lower DLE (0.0025±0.0004±0.0001, P = 1.14E-11 vs. 0.0047±0.0008±0.0002, P = 2.10E-11) than L- type CCBs. Transmission electron microscopy showed that T- and L-type CCBs caused fewer ultrastructural changes in the myocytes after drug delivery than L-type CCBs. T- and L-type CCBs produced less ultra-early and dose-dependent edema, fewer ultrastructural changes in the myocyte, and a greater antihypertensive effect. Proton density mapping combined with arterial cannulation and transmission electron microscopy allowed for quantification of ultra-early and dose-dependent edema, antihypertensive efficacy, and ultrastructural changes in the myocyte. This is important for the evaluation of induced vasodilatory edema.</description><subject>Antihypertensives</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Calcium</subject><subject>Calcium channel blockers</subject><subject>Cannulation</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drug dosages</subject><subject>Edema</subject><subject>Electron microscopy</subject><subject>Evaluation</subject><subject>Hypertension</subject><subject>Laboratory animals</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Microscopy</subject><subject>Myocytes</subject><subject>Pressure reduction</subject><subject>Proton density (concentration)</subject><subject>Real time</subject><subject>Rehabilitation</subject><subject>Research and Analysis Methods</subject><subject>Solvents</subject><subject>Studies</subject><subject>Transmission electron microscopy</subject><subject>Variance analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk2P0zAQjRCIXRb-AQJLXLik-CtxckFCqwVWWokLnC3HnrSpHLvYTqX8K34ibpuutoiTR5733sw8vaJ4S_CKMEE-bf0UnLKrnXewwpQRyvmz4pq0jJY1xez5k_qqeBXjFuOKNXX9srhilLYNFfy6-HO3V3ZSafAO-R5NNgVVggp2RsoZZHyE0sAOnAGXEBgY1bFxBMYUJp2moCzSG-XWENHgUNoAGmev5wTITGFw68xIQ7mZdxASuDjscyNMa2TA5jrMZ1bMtyTlwE8xz7_AB5XQ6DPhdfGiVzbCm-W9KX59vft5-718-PHt_vbLQ6m5qFJZUdY1nHJjGM1uaUVA0JpDrSvK277VLW5Nx3SPdcWMJqBIVWthWmi0EJVhN8X7k-7O-igXs6OkrMU1o4SKjLg_IYxXW7kLw6jCLL0a5PHDh7VUIQ3agsSd6UXVYaWI5rgiitS07YhgDe0Z7dqs9XmZNnUjGJ3Nzq5eiF523LCRa7-XIivx5rDMx0Ug-N8TxCTHIWqw9mTnYW_SioY3TYZ--Af6_-v4CaWDjzFA_7gMwfIQwDNLHgIolwBm2runhzySzoljfwHhW97U</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Guo, Hua</creator><creator>Wang, Yuqing</creator><creator>Cai, Wei</creator><creator>He, Chengqi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9500-6197</orcidid></search><sort><creationdate>20200416</creationdate><title>Evaluation of ultra-early and dose-dependent edema and ultrastructural changes in the myocyte during anti-hypertensive drug delivery in the spontaneously hypertensive rat model</title><author>Guo, Hua ; Wang, Yuqing ; Cai, Wei ; He, Chengqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-523b8424dd32371ca1e7264e6c5249f9c909db3cf0c53dc1ea156c7d9e8c775d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antihypertensives</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Calcium</topic><topic>Calcium channel blockers</topic><topic>Cannulation</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drug dosages</topic><topic>Edema</topic><topic>Electron microscopy</topic><topic>Evaluation</topic><topic>Hypertension</topic><topic>Laboratory animals</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Microscopy</topic><topic>Myocytes</topic><topic>Pressure reduction</topic><topic>Proton density (concentration)</topic><topic>Real time</topic><topic>Rehabilitation</topic><topic>Research and Analysis Methods</topic><topic>Solvents</topic><topic>Studies</topic><topic>Transmission electron microscopy</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hua</creatorcontrib><creatorcontrib>Wang, Yuqing</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>He, Chengqi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hua</au><au>Wang, Yuqing</au><au>Cai, Wei</au><au>He, Chengqi</au><au>Mishra, Yogendra Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of ultra-early and dose-dependent edema and ultrastructural changes in the myocyte during anti-hypertensive drug delivery in the spontaneously hypertensive rat model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2020-04-16</date><risdate>2020</risdate><volume>15</volume><issue>4</issue><spage>e0231244</spage><epage>e0231244</epage><pages>e0231244-e0231244</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Quantifying dose-dependent ultra-early edema and ultrastructural changes in the myocyte after drug delivery is important for the development of new mixed calcium channel blockers (CCBs). Arterial cannulation was used to measure mean arterial pressure in real time; simultaneously, magnetic resonance imaging proton density mapping was used to quantify edema 5-55 min after the delivery of L-type CCBs, T- and L-type CCBs, and solvent to a spontaneously hypertensive rat model. Transmission electron microscopy was used to show ultrastructural changes in the myocyte. Analysis of variance showed significant differences among the three groups in mean arterial pressure reduction (F = 246.36, P = 5.75E-25), ultra-early level of edema (ULE) (F = 175.49, P = 5.62E-22), and dose-dependent level of edema (DLE) (F = 199.48, P = 4.28E-23). Compared with the solvent's mean arterial pressure reduction (2.65±6.56±1.64), ULE (1.16±0.09±0.02), and DLE (0.0010±0.0001±0.0000), post hoc tests showed that T- and L-type CCBs had better mean arterial pressure reduction (90.67±11.58±2.90, P = 1.06E-24 vs. 68.34±15.19±3.80, P = 1.76E-12), lower ULE (1.53±0.14±0.04, P = 4.74E-9 vs. 2.08±0.18±0.04, P = 2.68E-22), and lower DLE (0.0025±0.0004±0.0001, P = 1.14E-11 vs. 0.0047±0.0008±0.0002, P = 2.10E-11) than L- type CCBs. Transmission electron microscopy showed that T- and L-type CCBs caused fewer ultrastructural changes in the myocytes after drug delivery than L-type CCBs. T- and L-type CCBs produced less ultra-early and dose-dependent edema, fewer ultrastructural changes in the myocyte, and a greater antihypertensive effect. Proton density mapping combined with arterial cannulation and transmission electron microscopy allowed for quantification of ultra-early and dose-dependent edema, antihypertensive efficacy, and ultrastructural changes in the myocyte. This is important for the evaluation of induced vasodilatory edema.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>32298274</pmid><doi>10.1371/journal.pone.0231244</doi><orcidid>https://orcid.org/0000-0001-9500-6197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-04, Vol.15 (4), p.e0231244-e0231244
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2390632127
source Publicly Available Content Database; PubMed Central
subjects Antihypertensives
Biology and Life Sciences
Blood pressure
Calcium
Calcium channel blockers
Cannulation
Drug delivery
Drug delivery systems
Drug dosages
Edema
Electron microscopy
Evaluation
Hypertension
Laboratory animals
Magnetic resonance
Magnetic resonance imaging
Mapping
Medicine
Medicine and Health Sciences
Microscopy
Myocytes
Pressure reduction
Proton density (concentration)
Real time
Rehabilitation
Research and Analysis Methods
Solvents
Studies
Transmission electron microscopy
Variance analysis
title Evaluation of ultra-early and dose-dependent edema and ultrastructural changes in the myocyte during anti-hypertensive drug delivery in the spontaneously hypertensive rat model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20ultra-early%20and%20dose-dependent%20edema%20and%20ultrastructural%20changes%20in%20the%20myocyte%20during%20anti-hypertensive%20drug%20delivery%20in%20the%20spontaneously%20hypertensive%20rat%20model&rft.jtitle=PloS%20one&rft.au=Guo,%20Hua&rft.date=2020-04-16&rft.volume=15&rft.issue=4&rft.spage=e0231244&rft.epage=e0231244&rft.pages=e0231244-e0231244&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0231244&rft_dat=%3Cproquest_plos_%3E2391978488%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-523b8424dd32371ca1e7264e6c5249f9c909db3cf0c53dc1ea156c7d9e8c775d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390632127&rft_id=info:pmid/32298274&rfr_iscdi=true