Loading…

Generating complex networks with time-to-control communities

Dynamical networks are pervasive in a multitude of natural and human-made systems. Often, we seek to guarantee that their state is steered to the desired goal within a specified number of time steps. Different network topologies lead to implicit trade-offs between the minimum number of driven nodes...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2020-08, Vol.15 (8), p.e0236753-e0236753
Main Authors: Ramos, Guilherme, Pequito, SĂ©rgio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dynamical networks are pervasive in a multitude of natural and human-made systems. Often, we seek to guarantee that their state is steered to the desired goal within a specified number of time steps. Different network topologies lead to implicit trade-offs between the minimum number of driven nodes and the time-to-control. In this study, we propose a generative model to create artificial dynamical networks with trade-offs similar to those of real networks. Remarkably, we show that several centrality and non-centrality measures are not necessary nor sufficient to explain the trade-offs, and as a consequence, commonly used generative models do not suffice to capture the dynamical properties under study. Therefore, we introduce the notion of time-to-control communities, that combine networks' partitions and degree distributions, which is crucial for the proposed generative model. We believe that the proposed methodology is crucial when invoking generative models to investigate dynamical network properties across science and engineering applications. Lastly, we provide evidence that the proposed generative model can generate a variety of networks with statistically indiscernible trade-offs (i.e., the minimum number of driven nodes vs. the time-to-control) from those steaming from real networks (e.g., neural and social networks).
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0236753