Loading…

Multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet

Introducing a knowledge graph into a recommender system as auxiliary information can effectively solve the sparse and cold start problems existing in traditional recommender systems. In recent years, many researchers have performed related work. A recommender system with knowledge graph embedding le...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-05, Vol.16 (5), p.e0251162-e0251162
Main Authors: Wang, YueQun, Dong, LiYan, Li, YongLi, Zhang, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introducing a knowledge graph into a recommender system as auxiliary information can effectively solve the sparse and cold start problems existing in traditional recommender systems. In recent years, many researchers have performed related work. A recommender system with knowledge graph embedding learning characteristics can be combined with a recommender system of the following three forms: one-by-one learning, joint learning, and alternating learning. For current knowledge graph embedding, a deep learning framework only has one embedding mode, which fails to excavate the potential information from the knowledge graph thoroughly. To solve this problem, this paper proposes the Ripp-MKR model, a multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet, which combines joint learning and alternating learning of knowledge graphs and recommender systems. Ripp-MKR is a deep end-to-end framework that utilizes a knowledge graph embedding task to assist recommendation tasks. Similar to the MKR model, in the Ripp-MKR model, two tasks are associated with cross and compress units, which automatically share latent features and learn the high-order interactions among items in recommender systems and entities in the knowledge graph. Additionally, the model borrows ideas from RippleNet and combines the knowledge graph with the historical interaction record of a user's historically clicked items to represent the user's characteristics. Through extensive experiments on real-world datasets, we demonstrate that Ripp-MKR achieves substantial gains over state-of-the-art baselines in movie, book, and music recommendations.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0251162