Loading…
Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks
Against the current COVID-19 pandemic, governments worldwide have devised a variety of non-pharmaceutical interventions to mitigate it. However, it is generally difficult to estimate the joint impact of different control strategies. In this paper, we tackle this question with an extended epidemic SE...
Saved in:
Published in: | PloS one 2021-05, Vol.16 (5), p.e0252019 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-637aede5566b0790642e3bea41117dbc1677a56daa461775988353cae70998f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-637aede5566b0790642e3bea41117dbc1677a56daa461775988353cae70998f63 |
container_end_page | |
container_issue | 5 |
container_start_page | e0252019 |
container_title | PloS one |
container_volume | 16 |
creator | Proverbio, Daniele Kemp, Françoise Magni, Stefano Husch, Andreas Aalto, Atte Mombaerts, Laurent Skupin, Alexander Gonçalves, Jorge Ameijeiras-Alonso, Jose Ley, Christophe |
description | Against the current COVID-19 pandemic, governments worldwide have devised a variety of non-pharmaceutical interventions to mitigate it. However, it is generally difficult to estimate the joint impact of different control strategies. In this paper, we tackle this question with an extended epidemic SEIR model, informed by a socio-political classification of different interventions. First, we inquire the conceptual effect of mitigation parameters on the infection curve. Then, we illustrate the potential of our model to reproduce and explain empirical data from a number of countries, to perform cross-country comparisons. This gives information on the best synergies of interventions to control epidemic outbreaks while minimising impact on socio-economic needs. For instance, our results suggest that, while rapid and strong lockdown is an effective pandemic mitigation measure, a combination of social distancing and early contact tracing can achieve similar mitigation synergistically, while keeping lower isolation rates. This quantitative understanding can support the establishment of mid- and long-term interventions, to prepare containment strategies against further outbreaks. This paper also provides an online tool that allows researchers and decision makers to interactively simulate diverse scenarios with our model. |
doi_str_mv | 10.1371/journal.pone.0252019 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2530363318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662543296</galeid><doaj_id>oai_doaj_org_article_c5bf84e6b0e548f08a395f758339efda</doaj_id><sourcerecordid>A662543296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-637aede5566b0790642e3bea41117dbc1677a56daa461775988353cae70998f63</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLwkGLHsRO_TJq6AZUmFTbYq3VJzm1KYpc4mdi3x2mzqUF7QIkU6_L7_8939gXBa0pmlKX008b2rYF6trUGZyTmMaHySXBMJYsjERP29GB9FLxwbkMIZ5kQz4MjlniYZ_I4uDu_M9BUBdTh9bfvF4ursLEl1iE4h8MbdmsMUWssuuoWjY-FVofGmmi7hraBAvtup65Mh60nusoaF8IKKuO6cL68WZxHVIa4rUr0eULbd3mL8Mu9DJ5pqB2-Gr8nwc_PFz_mX6PL5ZfF_OwyKoSMu0iwFLBEzoXISSqJSGJkOUJCKU3LvKAiTYGLEiARNE25zDLGWQGYEikzLdhJ8Hbvu62tU2PXnIo5I0wwRjNPLPZEaWGjtm3VQHunLFRqF7DtSkHrq6xRFTzXWYJ-K8iTTJMMmOQ65RljEnUJ3ut0zNbnDZaFb0gL9cR0-sdUa7WytyqjTCYi9gYfRoPW_u7RdaqpXIF1DQZtv9s3jSkhyVDZu3_Qx6sbqRX4Aiqjrc9bDKbqTIiYJyyWg9fsEco_u1PzV0xXPj4RfJwIPNPhn24FvXNqcX31_-zyZsq-P2DXCHW3drbud_dqCiZ7sGitcy3qhyZTooYJue-GGiZEjRPiZW8OD-hBdD8S7C9ylwts</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530363318</pqid></control><display><type>article</type><title>Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Proverbio, Daniele ; Kemp, Françoise ; Magni, Stefano ; Husch, Andreas ; Aalto, Atte ; Mombaerts, Laurent ; Skupin, Alexander ; Gonçalves, Jorge ; Ameijeiras-Alonso, Jose ; Ley, Christophe</creator><creatorcontrib>Proverbio, Daniele ; Kemp, Françoise ; Magni, Stefano ; Husch, Andreas ; Aalto, Atte ; Mombaerts, Laurent ; Skupin, Alexander ; Gonçalves, Jorge ; Ameijeiras-Alonso, Jose ; Ley, Christophe</creatorcontrib><description>Against the current COVID-19 pandemic, governments worldwide have devised a variety of non-pharmaceutical interventions to mitigate it. However, it is generally difficult to estimate the joint impact of different control strategies. In this paper, we tackle this question with an extended epidemic SEIR model, informed by a socio-political classification of different interventions. First, we inquire the conceptual effect of mitigation parameters on the infection curve. Then, we illustrate the potential of our model to reproduce and explain empirical data from a number of countries, to perform cross-country comparisons. This gives information on the best synergies of interventions to control epidemic outbreaks while minimising impact on socio-economic needs. For instance, our results suggest that, while rapid and strong lockdown is an effective pandemic mitigation measure, a combination of social distancing and early contact tracing can achieve similar mitigation synergistically, while keeping lower isolation rates. This quantitative understanding can support the establishment of mid- and long-term interventions, to prepare containment strategies against further outbreaks. This paper also provides an online tool that allows researchers and decision makers to interactively simulate diverse scenarios with our model.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0252019</identifier><identifier>PMID: 34019589</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Applications of mathematics ; Applied mathematics ; Belgium ; Computer programs ; Contact Tracing - methods ; Contact Tracing - statistics & numerical data ; Control ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; COVID-19 - prevention & control ; COVID-19 - transmission ; Disease transmission ; Drafting software ; Editing ; Epidemics ; Humans ; Infections ; International organizations ; Investigations ; Mathematical analysis ; Medicine and Health Sciences ; Methods ; Models, Statistical ; Pharmaceuticals ; Physical Distancing ; Prevention ; Public health ; Public health administration ; Quarantine - methods ; Quarantine - statistics & numerical data ; Research and Analysis Methods ; Reviews ; Social distancing ; Software ; Statistical analysis ; Supervision ; Viral diseases</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0252019</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Proverbio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Proverbio et al 2021 Proverbio et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-637aede5566b0790642e3bea41117dbc1677a56daa461775988353cae70998f63</citedby><cites>FETCH-LOGICAL-c692t-637aede5566b0790642e3bea41117dbc1677a56daa461775988353cae70998f63</cites><orcidid>0000-0001-5845-293X ; 0000-0001-8649-3616 ; 0000-0002-0122-479X ; 0000-0002-4122-6992 ; 0000-0002-5228-6165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2530363318/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2530363318?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34019589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Proverbio, Daniele</creatorcontrib><creatorcontrib>Kemp, Françoise</creatorcontrib><creatorcontrib>Magni, Stefano</creatorcontrib><creatorcontrib>Husch, Andreas</creatorcontrib><creatorcontrib>Aalto, Atte</creatorcontrib><creatorcontrib>Mombaerts, Laurent</creatorcontrib><creatorcontrib>Skupin, Alexander</creatorcontrib><creatorcontrib>Gonçalves, Jorge</creatorcontrib><creatorcontrib>Ameijeiras-Alonso, Jose</creatorcontrib><creatorcontrib>Ley, Christophe</creatorcontrib><title>Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Against the current COVID-19 pandemic, governments worldwide have devised a variety of non-pharmaceutical interventions to mitigate it. However, it is generally difficult to estimate the joint impact of different control strategies. In this paper, we tackle this question with an extended epidemic SEIR model, informed by a socio-political classification of different interventions. First, we inquire the conceptual effect of mitigation parameters on the infection curve. Then, we illustrate the potential of our model to reproduce and explain empirical data from a number of countries, to perform cross-country comparisons. This gives information on the best synergies of interventions to control epidemic outbreaks while minimising impact on socio-economic needs. For instance, our results suggest that, while rapid and strong lockdown is an effective pandemic mitigation measure, a combination of social distancing and early contact tracing can achieve similar mitigation synergistically, while keeping lower isolation rates. This quantitative understanding can support the establishment of mid- and long-term interventions, to prepare containment strategies against further outbreaks. This paper also provides an online tool that allows researchers and decision makers to interactively simulate diverse scenarios with our model.</description><subject>Applications of mathematics</subject><subject>Applied mathematics</subject><subject>Belgium</subject><subject>Computer programs</subject><subject>Contact Tracing - methods</subject><subject>Contact Tracing - statistics & numerical data</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - prevention & control</subject><subject>COVID-19 - transmission</subject><subject>Disease transmission</subject><subject>Drafting software</subject><subject>Editing</subject><subject>Epidemics</subject><subject>Humans</subject><subject>Infections</subject><subject>International organizations</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Pharmaceuticals</subject><subject>Physical Distancing</subject><subject>Prevention</subject><subject>Public health</subject><subject>Public health administration</subject><subject>Quarantine - methods</subject><subject>Quarantine - statistics & numerical data</subject><subject>Research and Analysis Methods</subject><subject>Reviews</subject><subject>Social distancing</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Supervision</subject><subject>Viral diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLwkGLHsRO_TJq6AZUmFTbYq3VJzm1KYpc4mdi3x2mzqUF7QIkU6_L7_8939gXBa0pmlKX008b2rYF6trUGZyTmMaHySXBMJYsjERP29GB9FLxwbkMIZ5kQz4MjlniYZ_I4uDu_M9BUBdTh9bfvF4ursLEl1iE4h8MbdmsMUWssuuoWjY-FVofGmmi7hraBAvtup65Mh60nusoaF8IKKuO6cL68WZxHVIa4rUr0eULbd3mL8Mu9DJ5pqB2-Gr8nwc_PFz_mX6PL5ZfF_OwyKoSMu0iwFLBEzoXISSqJSGJkOUJCKU3LvKAiTYGLEiARNE25zDLGWQGYEikzLdhJ8Hbvu62tU2PXnIo5I0wwRjNPLPZEaWGjtm3VQHunLFRqF7DtSkHrq6xRFTzXWYJ-K8iTTJMMmOQ65RljEnUJ3ut0zNbnDZaFb0gL9cR0-sdUa7WytyqjTCYi9gYfRoPW_u7RdaqpXIF1DQZtv9s3jSkhyVDZu3_Qx6sbqRX4Aiqjrc9bDKbqTIiYJyyWg9fsEco_u1PzV0xXPj4RfJwIPNPhn24FvXNqcX31_-zyZsq-P2DXCHW3drbud_dqCiZ7sGitcy3qhyZTooYJue-GGiZEjRPiZW8OD-hBdD8S7C9ylwts</recordid><startdate>20210521</startdate><enddate>20210521</enddate><creator>Proverbio, Daniele</creator><creator>Kemp, Françoise</creator><creator>Magni, Stefano</creator><creator>Husch, Andreas</creator><creator>Aalto, Atte</creator><creator>Mombaerts, Laurent</creator><creator>Skupin, Alexander</creator><creator>Gonçalves, Jorge</creator><creator>Ameijeiras-Alonso, Jose</creator><creator>Ley, Christophe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5845-293X</orcidid><orcidid>https://orcid.org/0000-0001-8649-3616</orcidid><orcidid>https://orcid.org/0000-0002-0122-479X</orcidid><orcidid>https://orcid.org/0000-0002-4122-6992</orcidid><orcidid>https://orcid.org/0000-0002-5228-6165</orcidid></search><sort><creationdate>20210521</creationdate><title>Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks</title><author>Proverbio, Daniele ; Kemp, Françoise ; Magni, Stefano ; Husch, Andreas ; Aalto, Atte ; Mombaerts, Laurent ; Skupin, Alexander ; Gonçalves, Jorge ; Ameijeiras-Alonso, Jose ; Ley, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-637aede5566b0790642e3bea41117dbc1677a56daa461775988353cae70998f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of mathematics</topic><topic>Applied mathematics</topic><topic>Belgium</topic><topic>Computer programs</topic><topic>Contact Tracing - methods</topic><topic>Contact Tracing - statistics & numerical data</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - prevention & control</topic><topic>COVID-19 - transmission</topic><topic>Disease transmission</topic><topic>Drafting software</topic><topic>Editing</topic><topic>Epidemics</topic><topic>Humans</topic><topic>Infections</topic><topic>International organizations</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Pharmaceuticals</topic><topic>Physical Distancing</topic><topic>Prevention</topic><topic>Public health</topic><topic>Public health administration</topic><topic>Quarantine - methods</topic><topic>Quarantine - statistics & numerical data</topic><topic>Research and Analysis Methods</topic><topic>Reviews</topic><topic>Social distancing</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Supervision</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Proverbio, Daniele</creatorcontrib><creatorcontrib>Kemp, Françoise</creatorcontrib><creatorcontrib>Magni, Stefano</creatorcontrib><creatorcontrib>Husch, Andreas</creatorcontrib><creatorcontrib>Aalto, Atte</creatorcontrib><creatorcontrib>Mombaerts, Laurent</creatorcontrib><creatorcontrib>Skupin, Alexander</creatorcontrib><creatorcontrib>Gonçalves, Jorge</creatorcontrib><creatorcontrib>Ameijeiras-Alonso, Jose</creatorcontrib><creatorcontrib>Ley, Christophe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical & Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Proverbio, Daniele</au><au>Kemp, Françoise</au><au>Magni, Stefano</au><au>Husch, Andreas</au><au>Aalto, Atte</au><au>Mombaerts, Laurent</au><au>Skupin, Alexander</au><au>Gonçalves, Jorge</au><au>Ameijeiras-Alonso, Jose</au><au>Ley, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-05-21</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0252019</spage><pages>e0252019-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Against the current COVID-19 pandemic, governments worldwide have devised a variety of non-pharmaceutical interventions to mitigate it. However, it is generally difficult to estimate the joint impact of different control strategies. In this paper, we tackle this question with an extended epidemic SEIR model, informed by a socio-political classification of different interventions. First, we inquire the conceptual effect of mitigation parameters on the infection curve. Then, we illustrate the potential of our model to reproduce and explain empirical data from a number of countries, to perform cross-country comparisons. This gives information on the best synergies of interventions to control epidemic outbreaks while minimising impact on socio-economic needs. For instance, our results suggest that, while rapid and strong lockdown is an effective pandemic mitigation measure, a combination of social distancing and early contact tracing can achieve similar mitigation synergistically, while keeping lower isolation rates. This quantitative understanding can support the establishment of mid- and long-term interventions, to prepare containment strategies against further outbreaks. This paper also provides an online tool that allows researchers and decision makers to interactively simulate diverse scenarios with our model.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34019589</pmid><doi>10.1371/journal.pone.0252019</doi><tpages>e0252019</tpages><orcidid>https://orcid.org/0000-0001-5845-293X</orcidid><orcidid>https://orcid.org/0000-0001-8649-3616</orcidid><orcidid>https://orcid.org/0000-0002-0122-479X</orcidid><orcidid>https://orcid.org/0000-0002-4122-6992</orcidid><orcidid>https://orcid.org/0000-0002-5228-6165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-05, Vol.16 (5), p.e0252019 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2530363318 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Applications of mathematics Applied mathematics Belgium Computer programs Contact Tracing - methods Contact Tracing - statistics & numerical data Control Coronaviruses COVID-19 COVID-19 - epidemiology COVID-19 - prevention & control COVID-19 - transmission Disease transmission Drafting software Editing Epidemics Humans Infections International organizations Investigations Mathematical analysis Medicine and Health Sciences Methods Models, Statistical Pharmaceuticals Physical Distancing Prevention Public health Public health administration Quarantine - methods Quarantine - statistics & numerical data Research and Analysis Methods Reviews Social distancing Software Statistical analysis Supervision Viral diseases |
title | Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20SPQEIR%20model%20assesses%20the%20effectiveness%20of%20non-pharmaceutical%20interventions%20against%20COVID-19%20epidemic%20outbreaks&rft.jtitle=PloS%20one&rft.au=Proverbio,%20Daniele&rft.date=2021-05-21&rft.volume=16&rft.issue=5&rft.spage=e0252019&rft.pages=e0252019-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0252019&rft_dat=%3Cgale_plos_%3EA662543296%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-637aede5566b0790642e3bea41117dbc1677a56daa461775988353cae70998f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530363318&rft_id=info:pmid/34019589&rft_galeid=A662543296&rfr_iscdi=true |