Loading…

TagSeq: Malicious behavior discovery using dynamic analysis

In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware classification and detection or malicious patterns identification, but as to malware activity, it still relies heavily on manual analysis for high-level s...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-05, Vol.17 (5), p.e0263644-e0263644
Main Authors: Huang, Yi-Ting, Sun, Yeali S, Chen, Meng Chang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware classification and detection or malicious patterns identification, but as to malware activity, it still relies heavily on manual analysis for high-level semantic descriptions. We develop a sequence-to-sequence (seq2seq) neural network, called TagSeq, to investigate a sequence of Windows API calls recorded from malware execution, and produce tags to label their malicious behavior. We propose embedding modules to transform Windows API function parameters, registry, filenames, and URLs into low-dimension vectors, while still preserving the closeness property. Moreover, we utilize an attention mechanism to capture the relations between generated tags and certain API invocation calls. Results show that the most possible malicious actions are identified by TagSeq. Examples and a case study demonstrate that the proposed embedding modules preserve semantic-physical relations and that the predicted tags reflect malicious intentions. We believe this work is suitable as a tool to help security analysts recognize malicious behavior and intent with easy-to-understand tags.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0263644