Loading…

Unsupervised model for structure segmentation applied to brain computed tomography

This article presents an unsupervised method for segmenting brain computed tomography scans. The proposed methodology involves image feature extraction and application of similarity and continuity constraints to generate segmentation maps of the anatomical head structures. Specifically designed for...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-06, Vol.19 (6), p.e0304017
Main Authors: Dos Santos, Paulo Victor, Scoczynski Ribeiro Martins, Marcella, Amorim Nogueira, Solange, Gonçalves, Cristhiane, Maffei Loureiro, Rafael, Pacheco Calixto, Wesley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c506t-3dc5c84cd7d87a0b3887338af7afc478d36ade414d1feb734586702af4cb73723
container_end_page
container_issue 6
container_start_page e0304017
container_title PloS one
container_volume 19
creator Dos Santos, Paulo Victor
Scoczynski Ribeiro Martins, Marcella
Amorim Nogueira, Solange
Gonçalves, Cristhiane
Maffei Loureiro, Rafael
Pacheco Calixto, Wesley
description This article presents an unsupervised method for segmenting brain computed tomography scans. The proposed methodology involves image feature extraction and application of similarity and continuity constraints to generate segmentation maps of the anatomical head structures. Specifically designed for real-world datasets, this approach applies a spatial continuity scoring function tailored to the desired number of structures. The primary objective is to assist medical experts in diagnosis by identifying regions with specific abnormalities. Results indicate a simplified and accessible solution, reducing computational effort, training time, and financial costs. Moreover, the method presents potential for expediting the interpretation of abnormal scans, thereby impacting clinical practice. This proposed approach might serve as a practical tool for segmenting brain computed tomography scans, and make a significant contribution to the analysis of medical images in both research and clinical settings.
doi_str_mv 10.1371/journal.pone.0304017
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069265670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797660058</galeid><sourcerecordid>A797660058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-3dc5c84cd7d87a0b3887338af7afc478d36ade414d1feb734586702af4cb73723</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbK1-A9EBQfRh12Qyk2SepBQvhUKhWl9DNjkzm5KZjLkU--3NttOyI32QPCQ5-Z1LzvkXxWuM1pgw_OnKJT9Ku57cCGtEUI0we1Ic4pZUK1oh8nTvfFC8COEKoYZwSp8XB4RzhjBuD4uLyzGkCfy1CaDLwWmwZed8GaJPKiYPZYB-gDHKaNxYymmyJoPRlRsvzVgqN0wp3loG13s5bW9eFs86aQO8mvej4vLrl58n31dn599OT47PVqpBNK6IVo3itdJMcybRZlcTIVx2THaqZlwTKjXUuNa4gw0jdcMpQ5XsapVvrCJHxdu7uJN1QcztCIIg2la0yWwmPs9E2gygVf6Gl1ZM3gzS3wgnjVi-jGYrenctMMasqRHJET7MEbz7nSBEMZigwFo5gku3yThrSEXbjL77B328pJnqpQVhxs7lxGoXVByzllGah8QztX6EykvDYFQeeGeyfeHwceGQmQh_Yi9TCOL0x8X_s-e_luz7PXYL0sZtcDbtxBCWYH0HKu9C8NA9dBkjsdPrfTfETq9i1mt2e7M_oQene4GSv3dq5rw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069265670</pqid></control><display><type>article</type><title>Unsupervised model for structure segmentation applied to brain computed tomography</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Dos Santos, Paulo Victor ; Scoczynski Ribeiro Martins, Marcella ; Amorim Nogueira, Solange ; Gonçalves, Cristhiane ; Maffei Loureiro, Rafael ; Pacheco Calixto, Wesley</creator><contributor>Masad, Ihssan S.</contributor><creatorcontrib>Dos Santos, Paulo Victor ; Scoczynski Ribeiro Martins, Marcella ; Amorim Nogueira, Solange ; Gonçalves, Cristhiane ; Maffei Loureiro, Rafael ; Pacheco Calixto, Wesley ; Masad, Ihssan S.</creatorcontrib><description>This article presents an unsupervised method for segmenting brain computed tomography scans. The proposed methodology involves image feature extraction and application of similarity and continuity constraints to generate segmentation maps of the anatomical head structures. Specifically designed for real-world datasets, this approach applies a spatial continuity scoring function tailored to the desired number of structures. The primary objective is to assist medical experts in diagnosis by identifying regions with specific abnormalities. Results indicate a simplified and accessible solution, reducing computational effort, training time, and financial costs. Moreover, the method presents potential for expediting the interpretation of abnormal scans, thereby impacting clinical practice. This proposed approach might serve as a practical tool for segmenting brain computed tomography scans, and make a significant contribution to the analysis of medical images in both research and clinical settings.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0304017</identifier><identifier>PMID: 38870119</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abnormalities ; Algorithms ; Artificial intelligence ; Biology and Life Sciences ; Brain ; Brain - diagnostic imaging ; Computational neuroscience ; Computed tomography ; Computer and Information Sciences ; Continuity (mathematics) ; CT imaging ; Datasets ; Feature extraction ; Humans ; Image Processing, Computer-Assisted - methods ; Medical imaging ; Medicine and Health Sciences ; Neural networks ; Physical Sciences ; Research and Analysis Methods ; Segmentation ; Tomography, X-Ray Computed - methods ; Unsupervised Machine Learning</subject><ispartof>PloS one, 2024-06, Vol.19 (6), p.e0304017</ispartof><rights>Copyright: © 2024 dos Santos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 dos Santos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 dos Santos et al 2024 dos Santos et al</rights><rights>2024 dos Santos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c506t-3dc5c84cd7d87a0b3887338af7afc478d36ade414d1feb734586702af4cb73723</cites><orcidid>0000-0002-5716-4968 ; 0000-0002-1635-2225 ; 0000-0002-3894-2971 ; 0000-0002-8267-7562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069265670/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069265670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38870119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Masad, Ihssan S.</contributor><creatorcontrib>Dos Santos, Paulo Victor</creatorcontrib><creatorcontrib>Scoczynski Ribeiro Martins, Marcella</creatorcontrib><creatorcontrib>Amorim Nogueira, Solange</creatorcontrib><creatorcontrib>Gonçalves, Cristhiane</creatorcontrib><creatorcontrib>Maffei Loureiro, Rafael</creatorcontrib><creatorcontrib>Pacheco Calixto, Wesley</creatorcontrib><title>Unsupervised model for structure segmentation applied to brain computed tomography</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This article presents an unsupervised method for segmenting brain computed tomography scans. The proposed methodology involves image feature extraction and application of similarity and continuity constraints to generate segmentation maps of the anatomical head structures. Specifically designed for real-world datasets, this approach applies a spatial continuity scoring function tailored to the desired number of structures. The primary objective is to assist medical experts in diagnosis by identifying regions with specific abnormalities. Results indicate a simplified and accessible solution, reducing computational effort, training time, and financial costs. Moreover, the method presents potential for expediting the interpretation of abnormal scans, thereby impacting clinical practice. This proposed approach might serve as a practical tool for segmenting brain computed tomography scans, and make a significant contribution to the analysis of medical images in both research and clinical settings.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Computational neuroscience</subject><subject>Computed tomography</subject><subject>Computer and Information Sciences</subject><subject>Continuity (mathematics)</subject><subject>CT imaging</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Segmentation</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Unsupervised Machine Learning</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNqNkltrFDEUxwdRbK1-A9EBQfRh12Qyk2SepBQvhUKhWl9DNjkzm5KZjLkU--3NttOyI32QPCQ5-Z1LzvkXxWuM1pgw_OnKJT9Ku57cCGtEUI0we1Ic4pZUK1oh8nTvfFC8COEKoYZwSp8XB4RzhjBuD4uLyzGkCfy1CaDLwWmwZed8GaJPKiYPZYB-gDHKaNxYymmyJoPRlRsvzVgqN0wp3loG13s5bW9eFs86aQO8mvej4vLrl58n31dn599OT47PVqpBNK6IVo3itdJMcybRZlcTIVx2THaqZlwTKjXUuNa4gw0jdcMpQ5XsapVvrCJHxdu7uJN1QcztCIIg2la0yWwmPs9E2gygVf6Gl1ZM3gzS3wgnjVi-jGYrenctMMasqRHJET7MEbz7nSBEMZigwFo5gku3yThrSEXbjL77B328pJnqpQVhxs7lxGoXVByzllGah8QztX6EykvDYFQeeGeyfeHwceGQmQh_Yi9TCOL0x8X_s-e_luz7PXYL0sZtcDbtxBCWYH0HKu9C8NA9dBkjsdPrfTfETq9i1mt2e7M_oQene4GSv3dq5rw</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Dos Santos, Paulo Victor</creator><creator>Scoczynski Ribeiro Martins, Marcella</creator><creator>Amorim Nogueira, Solange</creator><creator>Gonçalves, Cristhiane</creator><creator>Maffei Loureiro, Rafael</creator><creator>Pacheco Calixto, Wesley</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5716-4968</orcidid><orcidid>https://orcid.org/0000-0002-1635-2225</orcidid><orcidid>https://orcid.org/0000-0002-3894-2971</orcidid><orcidid>https://orcid.org/0000-0002-8267-7562</orcidid></search><sort><creationdate>20240613</creationdate><title>Unsupervised model for structure segmentation applied to brain computed tomography</title><author>Dos Santos, Paulo Victor ; Scoczynski Ribeiro Martins, Marcella ; Amorim Nogueira, Solange ; Gonçalves, Cristhiane ; Maffei Loureiro, Rafael ; Pacheco Calixto, Wesley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-3dc5c84cd7d87a0b3887338af7afc478d36ade414d1feb734586702af4cb73723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Computational neuroscience</topic><topic>Computed tomography</topic><topic>Computer and Information Sciences</topic><topic>Continuity (mathematics)</topic><topic>CT imaging</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Segmentation</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dos Santos, Paulo Victor</creatorcontrib><creatorcontrib>Scoczynski Ribeiro Martins, Marcella</creatorcontrib><creatorcontrib>Amorim Nogueira, Solange</creatorcontrib><creatorcontrib>Gonçalves, Cristhiane</creatorcontrib><creatorcontrib>Maffei Loureiro, Rafael</creatorcontrib><creatorcontrib>Pacheco Calixto, Wesley</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dos Santos, Paulo Victor</au><au>Scoczynski Ribeiro Martins, Marcella</au><au>Amorim Nogueira, Solange</au><au>Gonçalves, Cristhiane</au><au>Maffei Loureiro, Rafael</au><au>Pacheco Calixto, Wesley</au><au>Masad, Ihssan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised model for structure segmentation applied to brain computed tomography</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-06-13</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>e0304017</spage><pages>e0304017-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This article presents an unsupervised method for segmenting brain computed tomography scans. The proposed methodology involves image feature extraction and application of similarity and continuity constraints to generate segmentation maps of the anatomical head structures. Specifically designed for real-world datasets, this approach applies a spatial continuity scoring function tailored to the desired number of structures. The primary objective is to assist medical experts in diagnosis by identifying regions with specific abnormalities. Results indicate a simplified and accessible solution, reducing computational effort, training time, and financial costs. Moreover, the method presents potential for expediting the interpretation of abnormal scans, thereby impacting clinical practice. This proposed approach might serve as a practical tool for segmenting brain computed tomography scans, and make a significant contribution to the analysis of medical images in both research and clinical settings.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38870119</pmid><doi>10.1371/journal.pone.0304017</doi><tpages>e0304017</tpages><orcidid>https://orcid.org/0000-0002-5716-4968</orcidid><orcidid>https://orcid.org/0000-0002-1635-2225</orcidid><orcidid>https://orcid.org/0000-0002-3894-2971</orcidid><orcidid>https://orcid.org/0000-0002-8267-7562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-06, Vol.19 (6), p.e0304017
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3069265670
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Abnormalities
Algorithms
Artificial intelligence
Biology and Life Sciences
Brain
Brain - diagnostic imaging
Computational neuroscience
Computed tomography
Computer and Information Sciences
Continuity (mathematics)
CT imaging
Datasets
Feature extraction
Humans
Image Processing, Computer-Assisted - methods
Medical imaging
Medicine and Health Sciences
Neural networks
Physical Sciences
Research and Analysis Methods
Segmentation
Tomography, X-Ray Computed - methods
Unsupervised Machine Learning
title Unsupervised model for structure segmentation applied to brain computed tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20model%20for%20structure%20segmentation%20applied%20to%20brain%20computed%20tomography&rft.jtitle=PloS%20one&rft.au=Dos%20Santos,%20Paulo%20Victor&rft.date=2024-06-13&rft.volume=19&rft.issue=6&rft.spage=e0304017&rft.pages=e0304017-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0304017&rft_dat=%3Cgale_plos_%3EA797660058%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-3dc5c84cd7d87a0b3887338af7afc478d36ade414d1feb734586702af4cb73723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069265670&rft_id=info:pmid/38870119&rft_galeid=A797660058&rfr_iscdi=true