Loading…

A robust intrusion detection system based on a shallow learning model and feature extraction techniques

The escalating prevalence of cybersecurity risks calls for a focused strategy in order to attain efficient resolutions. This study introduces a detection model that employs a tailored methodology integrating feature selection using SHAP values, a shallow learning algorithm called PV-DM, and machine...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-01, Vol.19 (1), p.e0295801-e0295801
Main Authors: E L Asry, Chadia, Benchaji, Ibtissam, Douzi, Samira, E L Ouahidi, Bouabid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The escalating prevalence of cybersecurity risks calls for a focused strategy in order to attain efficient resolutions. This study introduces a detection model that employs a tailored methodology integrating feature selection using SHAP values, a shallow learning algorithm called PV-DM, and machine learning classifiers like XGBOOST. The efficacy of our suggested methodology is highlighted by employing the NSL-KDD and UNSW-NB15 datasets. Our approach in the NSL-KDD dataset exhibits exceptional performance, with an accuracy of 98.92%, precision of 98.92%, recall of 95.44%, and an F1-score of 96.77%. Notably, this performance is achieved by utilizing only four characteristics, indicating the efficiency of our approach. The proposed methodology achieves an accuracy of 82.86%, precision of 84.07%, recall of 77.70%, and an F1-score of 80.20% in the UNSW-NB15 dataset, using only six features. Our research findings provide substantial evidence of the enhanced performance of the proposed model compared to a traditional deep-learning model across all performance metrics.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0295801