Loading…

Effective image fusion strategies in scientific signal processing disciplines: Application to cancer and carcinoma treatment planning

Multimodal medical image fusion is a perennially prominent research topic that can obtain informative medical images and aid radiologists in diagnosing and treating disease more effectively. However, the recent state-of-the-art methods extract and fuse features by subjectively defining constraints,...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-07, Vol.19 (7), p.e0301441
Main Authors: Dogra, Ayush, Goyal, Bhawna, Lepcha, Dawa Chyophel, Alkhayyat, Ahmed, Singh, Devendra, Bavirisetti, Durga Prasad, Kukreja, Vinay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multimodal medical image fusion is a perennially prominent research topic that can obtain informative medical images and aid radiologists in diagnosing and treating disease more effectively. However, the recent state-of-the-art methods extract and fuse features by subjectively defining constraints, which easily distort the exclusive information of source images. To overcome these problems and get a better fusion method, this study proposes a 2D data fusion method that uses salient structure extraction (SSE) and a swift algorithm via normalized convolution to fuse different types of medical images. First, salient structure extraction (SSE) is used to attenuate the effect of noise and irrelevant data in the source images by preserving the significant structures. The salient structure extraction is performed to ensure that the pixels with a higher gradient magnitude impact the choices of their neighbors and further provide a way to restore the sharply altered pixels to their neighbors. In addition, a Swift algorithm is used to overcome the excessive pixel values and modify the contrast of the source images. Furthermore, the method proposes an efficient method for performing edge-preserving filtering using normalized convolution. In the end,the fused image are obtained through linear combination of the processed image and the input images based on the properties of the filters. A quantitative function composed of structural loss and region mutual data loss is designed to produce restrictions for preserving data at feature level and the structural level. Extensive experiments on CT-MRI images demonstrate that the proposed algorithm exhibits superior performance when compared to some of the state-of-the-art methods in terms of providing detailed information, edge contour, and overall contrasts.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0301441