Loading…
Trace Amounts of Copper in Water Induce β-Amyloid Plaques and Learning Deficits in a Rabbit Model of Alzheimer's Disease
Despite the crucial role played by cholesterol and copper in nutrition and normal brain function, recent evidence indicates that they may both be important factors in the etiology of Alzheimer's disease (AD). Here we provide critical evidence for the role of cholesterol and copper in AD by show...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2003-09, Vol.100 (19), p.11065-11069 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite the crucial role played by cholesterol and copper in nutrition and normal brain function, recent evidence indicates that they may both be important factors in the etiology of Alzheimer's disease (AD). Here we provide critical evidence for the role of cholesterol and copper in AD by showing that the addition of trace amounts of copper (0.12 ppm) to water given to cholesterol-fed rabbits can induce β-amyloid (Aβ) accumulation, including senile plaque-like structures in the hippocampus and temporal lobe, and can significantly retard the ability of rabbits to learn a difficult trace conditioning task. The Aβ deposits do not affect the ability of rabbits to detect or respond to the training stimuli nor to learn a simpler delay conditioning task. Trace amounts of copper in drinking water may influence clearance of Aβ from the brain at the level of the interface between the blood and cerebrovasculature and combined with high cholesterol may be a key component to the accumulation of Aβ in the brain, having a significant impact on learning and memory. Cholesterol-fed rabbits have at least 12 pathological markers seen in AD, suggesting that the cholesterol-fed rabbit is a good animal model for studying AD. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1832769100 |