Loading…
Resting-State Networks in the Infant Brain
In the absence of any overt task performance, it has been shown that spontaneous, intrinsic brain activity is expressed as system-wide, resting-state networks in the adult brain. However, the route to adult patterns of resting-state activity through neuronal development in the human brain is current...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2007-09, Vol.104 (39), p.15531-15536 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c684t-6593856202eada23a77007b553b659fa09157406acb2277bb0453264f85b22513 |
---|---|
cites | cdi_FETCH-LOGICAL-c684t-6593856202eada23a77007b553b659fa09157406acb2277bb0453264f85b22513 |
container_end_page | 15536 |
container_issue | 39 |
container_start_page | 15531 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Fransson, Peter Skiöld, Beatrice Horsch, Sandra Nordell, Anders Blennow, Mats Lagercrantz, Hugo Åden, Ulrika |
description | In the absence of any overt task performance, it has been shown that spontaneous, intrinsic brain activity is expressed as system-wide, resting-state networks in the adult brain. However, the route to adult patterns of resting-state activity through neuronal development in the human brain is currently unknown. Therefore, we used functional MRI to map patterns of resting-state activity in infants during sleep. We found five unique resting-states networks in the infant brain that encompassed the primary visual cortex, bilateral sensorimotor areas, bilateral auditory cortex, a network including the precuneus area, lateral parietal cortex, and the cerebellum as well as an anterior network that incorporated the medial and dorsolateral prefrontal cortex. These results suggest that resting-state networks driven by spontaneous signal fluctuations are present already in the infant brain. The potential link between the emergence of behavior and patterns of resting-state activity in the infant brain is discussed. |
doi_str_mv | 10.1073/pnas.0704380104 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_104_39_15531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25449169</jstor_id><sourcerecordid>25449169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-6593856202eada23a77007b553b659fa09157406acb2277bb0453264f85b22513</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxYModl199kkZfBAqTHvznbwIWqwWioIfzyEzm2lnO5usScbqf2-GHbtWkD4l3Ps7h5uTi9BTDEcYJD3eepuOQAKjCjCwe2iBQeNaMA330QKAyFoxwg7Qo5TWAKC5gofoAEslFcWwQK8-u5R7f1F_yTa76qPL1yFepar3Vb501ZnvrM_V22h7_xg96OyQ3JP5XKJvp---nnyozz-9Pzt5c163QrFcC66p4oIAcXZlCbVSAsiGc9qUVmfLfFwyELZtCJGyaYBxSgTrFC8FjukS1TvfdO22Y2O2sd_Y-MsE25u5dFVuznChsKaF1__ltzGs9qI_QowFcELLSEv0eqctwMatWudztMNti1sd31-ai_DDkBImx6IYvJwNYvg-lizNpk-tGwbrXRiTESVmzsTdIAGKMacT-OIfcB3G6EvihcFUYlC6QMc7qI0hpei6m5ExmGkzzLQZZr8ZRfH875fu-XkVClDNwKTc2zFDtcElq-lnDu9ATDcOQ3Y_c2Gf7dh1yiHewIQzprHQ9DfjltTK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201371089</pqid></control><display><type>article</type><title>Resting-State Networks in the Infant Brain</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Fransson, Peter ; Skiöld, Beatrice ; Horsch, Sandra ; Nordell, Anders ; Blennow, Mats ; Lagercrantz, Hugo ; Åden, Ulrika</creator><creatorcontrib>Fransson, Peter ; Skiöld, Beatrice ; Horsch, Sandra ; Nordell, Anders ; Blennow, Mats ; Lagercrantz, Hugo ; Åden, Ulrika</creatorcontrib><description>In the absence of any overt task performance, it has been shown that spontaneous, intrinsic brain activity is expressed as system-wide, resting-state networks in the adult brain. However, the route to adult patterns of resting-state activity through neuronal development in the human brain is currently unknown. Therefore, we used functional MRI to map patterns of resting-state activity in infants during sleep. We found five unique resting-states networks in the infant brain that encompassed the primary visual cortex, bilateral sensorimotor areas, bilateral auditory cortex, a network including the precuneus area, lateral parietal cortex, and the cerebellum as well as an anterior network that incorporated the medial and dorsolateral prefrontal cortex. These results suggest that resting-state networks driven by spontaneous signal fluctuations are present already in the infant brain. The potential link between the emergence of behavior and patterns of resting-state activity in the infant brain is discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0704380104</identifier><identifier>PMID: 17878310</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adults ; Animals ; Auditory cortex ; Babies ; Behavior ; Biological Sciences ; Brain ; Brain - growth & development ; Brain - metabolism ; Brain - physiology ; Brain Mapping - methods ; Cerebral hemispheres ; Connectivity ; Datasets ; Female ; Humans ; Image Processing, Computer-Assisted ; Infant ; Infants ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medicin och hälsovetenskap ; Models, Neurological ; Neurosciences ; Rest ; Sleep ; Visual cortex</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-09, Vol.104 (39), p.15531-15536</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 25, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-6593856202eada23a77007b553b659fa09157406acb2277bb0453264f85b22513</citedby><cites>FETCH-LOGICAL-c684t-6593856202eada23a77007b553b659fa09157406acb2277bb0453264f85b22513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/39.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25449169$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25449169$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17878310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:116052355$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Fransson, Peter</creatorcontrib><creatorcontrib>Skiöld, Beatrice</creatorcontrib><creatorcontrib>Horsch, Sandra</creatorcontrib><creatorcontrib>Nordell, Anders</creatorcontrib><creatorcontrib>Blennow, Mats</creatorcontrib><creatorcontrib>Lagercrantz, Hugo</creatorcontrib><creatorcontrib>Åden, Ulrika</creatorcontrib><title>Resting-State Networks in the Infant Brain</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In the absence of any overt task performance, it has been shown that spontaneous, intrinsic brain activity is expressed as system-wide, resting-state networks in the adult brain. However, the route to adult patterns of resting-state activity through neuronal development in the human brain is currently unknown. Therefore, we used functional MRI to map patterns of resting-state activity in infants during sleep. We found five unique resting-states networks in the infant brain that encompassed the primary visual cortex, bilateral sensorimotor areas, bilateral auditory cortex, a network including the precuneus area, lateral parietal cortex, and the cerebellum as well as an anterior network that incorporated the medial and dorsolateral prefrontal cortex. These results suggest that resting-state networks driven by spontaneous signal fluctuations are present already in the infant brain. The potential link between the emergence of behavior and patterns of resting-state activity in the infant brain is discussed.</description><subject>Adults</subject><subject>Animals</subject><subject>Auditory cortex</subject><subject>Babies</subject><subject>Behavior</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - growth & development</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cerebral hemispheres</subject><subject>Connectivity</subject><subject>Datasets</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Infant</subject><subject>Infants</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medicin och hälsovetenskap</subject><subject>Models, Neurological</subject><subject>Neurosciences</subject><subject>Rest</subject><subject>Sleep</subject><subject>Visual cortex</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkt1rFDEUxYModl199kkZfBAqTHvznbwIWqwWioIfzyEzm2lnO5usScbqf2-GHbtWkD4l3Ps7h5uTi9BTDEcYJD3eepuOQAKjCjCwe2iBQeNaMA330QKAyFoxwg7Qo5TWAKC5gofoAEslFcWwQK8-u5R7f1F_yTa76qPL1yFepar3Vb501ZnvrM_V22h7_xg96OyQ3JP5XKJvp---nnyozz-9Pzt5c163QrFcC66p4oIAcXZlCbVSAsiGc9qUVmfLfFwyELZtCJGyaYBxSgTrFC8FjukS1TvfdO22Y2O2sd_Y-MsE25u5dFVuznChsKaF1__ltzGs9qI_QowFcELLSEv0eqctwMatWudztMNti1sd31-ai_DDkBImx6IYvJwNYvg-lizNpk-tGwbrXRiTESVmzsTdIAGKMacT-OIfcB3G6EvihcFUYlC6QMc7qI0hpei6m5ExmGkzzLQZZr8ZRfH875fu-XkVClDNwKTc2zFDtcElq-lnDu9ATDcOQ3Y_c2Gf7dh1yiHewIQzprHQ9DfjltTK</recordid><startdate>20070925</startdate><enddate>20070925</enddate><creator>Fransson, Peter</creator><creator>Skiöld, Beatrice</creator><creator>Horsch, Sandra</creator><creator>Nordell, Anders</creator><creator>Blennow, Mats</creator><creator>Lagercrantz, Hugo</creator><creator>Åden, Ulrika</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20070925</creationdate><title>Resting-State Networks in the Infant Brain</title><author>Fransson, Peter ; Skiöld, Beatrice ; Horsch, Sandra ; Nordell, Anders ; Blennow, Mats ; Lagercrantz, Hugo ; Åden, Ulrika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-6593856202eada23a77007b553b659fa09157406acb2277bb0453264f85b22513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adults</topic><topic>Animals</topic><topic>Auditory cortex</topic><topic>Babies</topic><topic>Behavior</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - growth & development</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cerebral hemispheres</topic><topic>Connectivity</topic><topic>Datasets</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Infant</topic><topic>Infants</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medicin och hälsovetenskap</topic><topic>Models, Neurological</topic><topic>Neurosciences</topic><topic>Rest</topic><topic>Sleep</topic><topic>Visual cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fransson, Peter</creatorcontrib><creatorcontrib>Skiöld, Beatrice</creatorcontrib><creatorcontrib>Horsch, Sandra</creatorcontrib><creatorcontrib>Nordell, Anders</creatorcontrib><creatorcontrib>Blennow, Mats</creatorcontrib><creatorcontrib>Lagercrantz, Hugo</creatorcontrib><creatorcontrib>Åden, Ulrika</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fransson, Peter</au><au>Skiöld, Beatrice</au><au>Horsch, Sandra</au><au>Nordell, Anders</au><au>Blennow, Mats</au><au>Lagercrantz, Hugo</au><au>Åden, Ulrika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting-State Networks in the Infant Brain</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-09-25</date><risdate>2007</risdate><volume>104</volume><issue>39</issue><spage>15531</spage><epage>15536</epage><pages>15531-15536</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In the absence of any overt task performance, it has been shown that spontaneous, intrinsic brain activity is expressed as system-wide, resting-state networks in the adult brain. However, the route to adult patterns of resting-state activity through neuronal development in the human brain is currently unknown. Therefore, we used functional MRI to map patterns of resting-state activity in infants during sleep. We found five unique resting-states networks in the infant brain that encompassed the primary visual cortex, bilateral sensorimotor areas, bilateral auditory cortex, a network including the precuneus area, lateral parietal cortex, and the cerebellum as well as an anterior network that incorporated the medial and dorsolateral prefrontal cortex. These results suggest that resting-state networks driven by spontaneous signal fluctuations are present already in the infant brain. The potential link between the emergence of behavior and patterns of resting-state activity in the infant brain is discussed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17878310</pmid><doi>10.1073/pnas.0704380104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-09, Vol.104 (39), p.15531-15536 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_104_39_15531 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Adults Animals Auditory cortex Babies Behavior Biological Sciences Brain Brain - growth & development Brain - metabolism Brain - physiology Brain Mapping - methods Cerebral hemispheres Connectivity Datasets Female Humans Image Processing, Computer-Assisted Infant Infants Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medicin och hälsovetenskap Models, Neurological Neurosciences Rest Sleep Visual cortex |
title | Resting-State Networks in the Infant Brain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting-State%20Networks%20in%20the%20Infant%20Brain&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fransson,%20Peter&rft.date=2007-09-25&rft.volume=104&rft.issue=39&rft.spage=15531&rft.epage=15536&rft.pages=15531-15536&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0704380104&rft_dat=%3Cjstor_pnas_%3E25449169%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c684t-6593856202eada23a77007b553b659fa09157406acb2277bb0453264f85b22513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201371089&rft_id=info:pmid/17878310&rft_jstor_id=25449169&rfr_iscdi=true |