Loading…

Isolation and Characterization of Intermediates in Site-Specific Recombination

Cre, the site-specific recombinase from bacteriophage P1, catalyzes a recombination reaction between specific DNA sequences designated as lox sites. The breakage and rejoining of partners during this recombination process must be highly concerted because it has not been possible to detect intermedia...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1987-10, Vol.84 (19), p.6840-6844
Main Authors: Hoess, Ronald, Wierzbicki, Anna, Abremski, Kenneth
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cre, the site-specific recombinase from bacteriophage P1, catalyzes a recombination reaction between specific DNA sequences designated as lox sites. The breakage and rejoining of partners during this recombination process must be highly concerted because it has not been possible to detect intermediates of the reaction with wild-type Cre. Several mutant Cre proteins have been isolated that produce significant amounts of a possible intermediate product of the recombination reaction. The product has been identified as a Holliday structure in which one set of the DNA strands of the recombining partners has been exchanged. Wild-type Cre protein is capable of acting on this structure to form recombinant products, which is consistent with this being an intermediate in the recombination reaction. Characterization of the Holliday structure indicated that one set of strands in the recombining partners was always exchanged preferentially before the other set. In addition, it has been found that certain Cre mutants that are unable to carry out recombination in vitro are able to resolve the intermediate. This suggests that these mutants are defective in a step in the reaction that precedes the formation of the Holliday intermediate.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.84.19.6840