Loading…
Micromotion of Mammalian Cells Measured Electrically
Motility is a fundamental property of mammalian cells that normally is observed in tissue culture by time lapse microscopy where resolution is limited by the wavelength of light. This paper examines a powerful electrical technique by which cell motion is quantitatively measured at the nanometer leve...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1991-09, Vol.88 (17), p.7896-7900 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motility is a fundamental property of mammalian cells that normally is observed in tissue culture by time lapse microscopy where resolution is limited by the wavelength of light. This paper examines a powerful electrical technique by which cell motion is quantitatively measured at the nanometer level. In this method, the cells are cultured on small evaporated gold electrodes carrying weak ac currents. A large change in the measured electrical impedance of the electrodes is observed when cells attach and spread on these electrodes. When the impedance is tracked as a function of time, fluctuations are observed that are a direct measure of cell motion. Surprisingly, these fluctuations continue even when the cell layer becomes confluent. By comparing the measured impedance with a theoretical model, it is clear that under these circumstances the average motions of the cell layer of 1 nm can be inferred from the measurements. We refer to this aspect of cell motility as micromotion. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.88.17.7896 |